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Aggregation of data from multiple sensor nodes is usually done by simple methods such
as averaging or, more sophisticated, iterative filtering methods. However, such aggregation
methods are highly vulnerable to malicious attacks where the attacker has knowledge of
all sensed values and has ability to alter some of the readings. In this work, we develop
and evaluate algorithms that eliminate or minimize the influence of altered readings. The
basic idea is to consider altered data as outliers and find algorithms that effectively identify
altered data as outliers and remove them. Once the outliers have been removed, use some
standard technique to estimate a true value.

We calculate local outlier factor (LOF) for each data point. We propose methods for
computing threshold values from these LOF values. The data points that have LOF value
above a calculated threshold value are removed before computing an estimated signal from
the data points reported by the sensors. Thus, the proposed data aggregation algorithm
operates in two phases: removal of outliers and computation of an estimated true value
from the remaining sensor data. Extensive evaluation of the proposed algorithms show that
they significantly outperform all existing methods. For simple cases, we have developed

expressions for calculating LOF values.
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Chapter 1

Introduction

The present level of processes automation requires extensive use of various sensors. Due
to unreliability of sensors they are deployed redundantly. Data from multiple sensor nodes
is accumulated and combined by an aggregator node. An aggregator node not only collects
readings from sensors, but also minimizes or eliminates the influence of readings from
faulty or compromised sensors. Secure data aggregation algorithms for sensor networks
aim to provide mechanisms for eliminating or resisting data distortion. These algorithms

are usually run on an aggregator node or a base station.
1.1 Data Aggregation Methods

Probably the earliest and easiest method of data aggregation is simple averaging of readings
from all sensors. However, simple averaging method has some major drawbacks, because it
does not consider the existence of bias errors or faulty sensors and not to mention malicious
attacks. Only one faulty sensor may reduce the accuracy of aggregated result significantly.
In addition, the method does not doubt any sensor’s reading. This makes the method highly
vulnerable even to a simple attack, where the attacker skews reading of one or more sensors
to a certain degree to alter estimated reading.

Iterative Filtering (IF) algorithms offer refined approaches (see [8] and [18] for exam-
ples). They initially assign one weight to the reading of each sensor and then weights
are recalculated at each iteration based on the distance of the readings from the estimated
value obtained in the previous iteration. They reduce the effect of a simple attack. But the
weakest point of these iterative filtering algorithms is the use of a predetermined procedure
for assigning an initial weight to each sensor’s reading.

An iterative algorithm is vulnerable to a malicious attacker who has knowledge of all
readings and has power to alter two or more readings [18]. A malicious attacker can force
the iterative filtering algorithm to converge to a desired value by altering readings of the

compromised sensors (for details of an example situation see [18]).
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To overcome weakness of the iterative filtering algorithm in [8], a Robust Data Ag-
gregation Method (RDAM) was proposed in [18]. The main idea of the algorithm is to
estimate a set of non-equal initial weights for the readings. The objective of the method is
to calculate smaller initial weights for the readings of the compromised sensors. Results of
extensive empirical evaluation of the RDAM method against other methods demonstrated
highest accuracy for both simple and collusion attacks (for details see [18]).

However, any estimation of mean and standard deviation is extremely sensitive to
presence of outliers [1],[14]. Thus, any aggregation algorithm that estimates true values
from sensor-readings before removing outliers is susceptible to errors. In this work, we
propose and evaluate a set of two phase data aggregation algorithms. In the first phase the

outliers are identified and then, in the second phase an estimate is calculated.
1.2 Overview of the Thesis

In this work, we consider variations of the collusion attack. Our extensive evaluations
discovered that in certain conditions the RDAM cannot overcome the influence of malicious
attacker. In this work several two phase algorithms are proposed and evaluated.

The first phase of the proposed method employs a variant of Local Outlier Factor (LOF)
calculation method [6] to estimate the degree that an object is an outlier because of collusion
attack, sensor fault, noise, or a combination of them. This gives a flexible instrument to
exclude suspected sensor-readings before estimation of a true value. Note that this method,
unlike methods described previously, removes sensor-readings from compromised or bad
sensors, which improve estimated values, while decrease the amount of calculations in the
second phase of the proposed method. We present a set of different methods, including
IF and RDAM, after LOF method. Also we test some variations of the algorithms in
cooperation with k-means clustering method [9]. Finally, we introduce two LOF-based non-
iterative algorithms that we found most accurate almost in all considered attacks. Moreover,
the methods work without IF portion, that excludes disadvantages and vulnerabilities related

to it.
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The rest of thesis is organized as follows. Chapter 2 describes the problem statement.
Here we briefly present most widely used topology of sensor networks and review their
potential vulnerabilities. Chapter 3 briefly reviews work related to studies here. We
describe existing data aggregation as well as outlier detection methods. Chapter 4 presents
basic definitions and steps for computation of LOF. Chapter 5 presents our novel algorithms.
We describe different combinations of using LOF method that we apply in our algorithms.
Chapter 6 presents some theoretical results for computing LOF values when part of the data
is from collusion attack. Chapter 7 shows our experimental results. Finally, the conclusion

is provided in Chapter 8.
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Chapter 2
Background
2.1 Model

The sensor network topology used for our work is an abstract model proposed in [20]
(see Figure 2.1). A sensor network is built of a base station and a set of sensor clusters.
Each cluster has a cluster head that gathers data from all sensor-nodes connected to it. A
cluster head is also known as an aggregator node, because it gathers readings from multiple
sensor nodes. The main functions of an aggregator node are collecting data from its sensor
nodes, aggregating the raw data to produce an estimated reading, and communicating the
processed data to the base station. Each sensor node has a micro-controller with one
or multiple sensors. The micro-controller is equipped with relatively small memory and
computing power, while an aggregator has bigger memory and higher computing power.
A base station has larger memory and computing power, in addition to communication

capabilities.

Base station

. | Aggregator Node| | Aggregator Node| | Aggregator Node
Sensor nodes E Sensor nodes Sensor nodes
*  (microcontrollers 5 (microcontrollers (microcontrollers
: with sensors) : with sensors) with sensors)

Cluster

Figure 2.1: Sensor network topology.

—
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2.2 Problem Statement

Sensor networks often operate in unattended environments and are deployed distributively,
which makes them highly susceptible to failure and physical attacks. This creates threats to
sensor networks security. Although in general, security can be defined as the combination
of availability, confidentiality, and integrity, in our work we focus only on inftegrity. In
addition, it is assumed that the aggregator nodes and the base station are not compromised.
Assuming these limitations, we identify possible threats to the sensor network and propose

solutions to overcome them (see Figure 2.2).
Classification of threats to sensor networks and their solutions

Nowadays, inexpensive sensors are embedded in numerous devices. These inexpensive
senors are not only unreliable, but they are also susceptible to failure. Moreover, they are
usually insecure and their outputs are easily manipulated by malicious attackers.

Any sensor reading further from frue value can be considered as an outlier, and in the

literature they are categorized into several classes (see [13],[19], and [17]).
1. Noise: data with greater variance.
2. Spike: data with one or more out-of-bound readings.
3. Stuck-at: data with quasi-zero variance.

Consequently we cannot depend on readings from a single sensor. However, low cost of
sensors allows one to compensate for their unreliability through use of multiple sensors.
For example, after one receives readings from multiple sensors and apply a filtering tech-
nique, e.g. [terative Filtering, the contributions of reading from unreliable sensors are
reduced. Furthermore, this approach minimizes errors because of simple attacks mentioned
in Chapter 1.

However, this technique cannot overcome a malicious attack, if and when the attacker

adings, details about filtering technique, and capability to alter some

—
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of the readings. An example of a malicious attack is described in [18], where a collusion
attack forces the Iterative filtering algorithm to converge to a skewed value. Rezvani et al.
in [18] proposed an algorithm to improve Ilterative Filtering and it is capable of reducing
impacts of colluded readings. However, in our experiments we found conditions under
which algorithms for reducing influence of colluded readings, such as RDAM method, are
not effective. As a solution for such types of attacks we propose a set of variations of outlier
detection algorithms that identify and, note, completely remove the impact of compromised
readings. Considering that a micro-controller is very limited in its performance we set a

criteria for the algorithms that they do not require high computational efforts.
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Sensor Node Sensor nodes
Cluster
low memory
unreliable limitations low comput.atlo.n eI
low power (if wireless)
low bandwidth (if wireless)
stuck-at fault ® malicious attack:
noise ) + (e]ele]elelel I ] }
roblems iIteri
spike ® P Filtering
attack o 00000000@®
multiple sensors
O0000Reee
+ 0000000 solution
Filtering Identify and remove ®00®
000020000 O0000
the impact of failured, result the impact of failured
inacurate and and compromised
compromised data is removed
data is minimised
[O] - asensor node (microcontroller with a sensor(s))
O - accurate data
© - noisy data (data with a greater variance)
® - spike data (one or more readings are out-of-bound)
® - compromised data (fake malicious data)
® - stuck-at data (data with quasi zero variance)
o o @ o ® -readings whose contribution in aggregated result is minimised

Figure 2.2: Sensor network threats and solutions.
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Chapter 3
Related Work
The extensive use of cheap and unreliable sensors mandates development of new algorithms
for aggregating data securely, because these sensors are not only unreliable, but they are
also easily compromised by malicious attackers. Also, it is necessary to take into account
that new types of attacks continue to emerge with time. Thus, a robust algorithm that is
resistant to known attacks, also should be resistant to emerging attacks. There are a number
of research approaches and works related to our topic.

In our examples and experiments we consider a data model depicted in Table 3.1, where
n - is total number of sensors, m - is number of readings from each sensor, xgt) - data from
sensor s at time 7.

Table 3.1: Data Model

Sensor readings
instant | s=1|s=2|..|s=n
— (D (D (D
r=1 x%z) x%z) x?z)
r=2 | x X5 e | Xy
_ (m) (m) (m)
t=m | x X5 v | Xy

3.1 Iterative Filtering Algorithms

Certainly the most studied method related to our research is Iterative Filtering Algo-
rithms [16],[23],[26],[8],[15],[2]. In general, the majority of the work was dedicated for
rating networks, where users give ratings to objects. Mizzaro proposed an algorithm for the
assessment of scholarly papers [16]. Yu et al. [23] and, more recently, Zhou et al. [26] pre-
sented iterative algorithms for rating networks. However, these reputation-based algorithms
may not always converge. Subsequently, a number of studies have proposed novel methods
to overcome the convergence issue. C. de Kerchove and P. Van Dooren introduced a conver-
gent Iterative Filtering algorithm using three discriminant functions: inverse, exponential,

in [15] presented six iterative algorithms, where users reputation is

—
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calculated using the aggregated difference between the users rating and the corresponding
objects ranking. Ayday et al. developed an iterative algorithm with probabilistic and belief
propagation-based approach (see details in [2]). However, a fundamental problem of all
IF algorithms is that they are primarily aimed against simple cheaters and do not consider
severe malicious attacks such as a collusion attack that we mentioned in Chapter 1. Let us

consider an example to illustrate this issue.

Example 1. Let us consider a dataset X with m = 3 readings from each of the n = 8
sensors. Sensors s| - s5 are providing their true readings to the aggregator, while sg - s3
are under the influence of a malicious attacker and providing manipulated readings. The
reading from sg at time t is equal to the average of all readings of all sensors. Table 3.2
shows how the algorithm converges quickly to the average readings from ss. This happens

because the algorithm assigns equal initial weights for each sensor at the first round.

Table 3.2: Iterative Filtering Algorithm converges to colluded readings from sg sensor.

Sensor readings aggregate values
instant | § = s=2 | 5= s=4 | s=5| s=6 | s=7 s=38
tr=1 | 1073 | 9.61 9.77 10.20 | 1042 | 15.45 | 15.13 11.6157
t=2 | 1075 | 9.63 9.73 10.21 | 1043 | 15.75 | 15.93 11.7757
t=3 | 1074 | 9.69 9.92 10.32 10.9 1598 | 15.39 11.8486
round Sensor weights t=1 t=2 t=3

1 1 1 1 1 1 1 1 1 11.6157 | 11.7757 | 11.8486

2 0.9786 | 0.2258 | 0.2652 | 0.4417 | 0.7246 | 0.0631 | 0.0712 | 3.2000E+09 | 11.6157 | 11.7757 | 11.8486

3 0.9786 | 0.2258 | 0.2652 | 0.4417 | 0.7246 | 0.0631 | 0.0712 | 1.1625E+18 | 11.6157 | 11.7757 | 11.8486

3.2 Enhanced Iterative Filtering Algorithm

To reduce effect of collusion attack, Rezvani et al. proposed a Robust Data Aggregation
Method (RDAM), which is an improvement to IF method. In this method, unequal initial
weights are calculated using the readings available to the aggregator [18]. This enhancement
not only makes an IF algorithm collusion attack resistant, but it also reduces the number of
required iterations to converge to an estimated value. The method is based on the assumption

that the distribution of stochastic components of sensor errors is known or can be estimated.
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Example (Cont.). With the same data the algorithm reduces the impact of readings from
S¢ - Sg (see Table 3.3). The algorithm estimates unequal initial weights for the readings at
the first round. This allows to avoid converging to the values of ss. Although the algorithm
in the example converges to the values of s4, in real data the algorithm usually converges
to unique values, which actually occurred in our extensive simulations.

Table 3.3: RDAM avoids converging to colluded readings from sg sensor.

Sensor readings aggregate values
instant | s=1 | s=2 s=3 s=4 s=5 | s=6 | s=7 s=8
t=1 1] 1073 | 9.61 9.717 10.20 1042 | 1545 | 15.13 | 11.6157
t=2 | 1075 | 9.63 9.73 10.21 1043 | 1575 | 1593 | 11.7757
t=3 ] 10.74 | 9.69 9.92 10.32 109 | 1598 | 15.39 | 11.8486
round Sensor weights t=1 =2 t=3

1 0.0722 | 0.3551 | 0.0707 0.4689 | 0.0055 | 0.0072 | 0.0011 | 0.0193 | 10.0699 | 10.0865 | 10.1772
2.5168 | 4.5607 | 10.5808 | 57.2282 | 3.9345 | 0.0317 | 0.0345 | 0.3734 | 10.1473 | 10.1527 | 10.2842
3.3182 | 3.2789 | 6.6131 | 408.4660 | 5.6548 | 0.0326 | 0.0356 | 0.4145 | 10.1980 | 10.2076 | 10.3222
3.9912 | 2.7799 | 5.2341 | 2.07E+05 | 6.9363 | 0.0332 | 0.0363 | 0.4413 | 10.2000 | 10.2100 | 10.3200
4.0060 | 2.7741 | 5.2145 | 1.38E+10 | 6.9255 | 0.0332 | 0.0363 | 0.4417 | 10.2000 | 10.2100 | 10.3200

(LIRS ROSIE

3.3 Statistical Estimation

If the readings from the sensors have no outliers, a statistical method for estimating true
values is described here. The main assumption for the method is that every sensor has a
certain error in its readings, because no sensor gives accurate readings continuously. This
suggests to find a method for estimation of a true value in such a way that all the readings
are considered, but weights vary based on temporal variation pattern of the readings. The
sensor that has least variance is considered to have provided better readings. We propose to
use the variance of readings of a sensor to determine a weight that is applied to the readings
of the sensor when a true value is estimated from readings of all the sensors. A top-down

description of the method starts from Equation (3.1).

3.1

where v is defined as

(3.2)
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and p; is the mean of all readings from sensor s

1 m
H= e (3.3)

After the weights are calculated, estimates of the true values are obtained using the

equation below.

n
PO = e xl! (3.4)
s=1

This method should be used only if the sensor readings are free of outliers or outliers
have been identified and removed from the readings. Next we describe algorithms useful

for outlier detection.
3.4 Outlier Detection Algorithms

Detection of outliers in a dataset is a well studied subject. But the information age, especially
big-data and Internet of Everything (IoE), has seen renewed interest in the subject to fit the
current needs. In our study, we use a recently proposed method and it is described in
Chapter 4. In this section we provide a brief overview of the existing outlier detection
method.

In general, outlier detection methods form five main classes: statistical, nearest neighbor,
clustering, classification, and spectral decomposition [25]. In statistical methods outliers
are defined as objects that do not fit in assumed distribution [3],[24],[22]. Nearest neighbor
methods use a distance as a mean to distinguish outliers [5],[6].

Clustering algorithms use similarity metrics [12]. Most popular and probably old clus-
tering algorithm is k-means [9], which we also apply in our experiments. Classification
methods use training phase when they create mathematical models for regular data and
outliers. After that they classify new data using these models [21],[11]. Spectral decompo-
sition methods use principal component analysis to create a model structure. Readings that

do not fit the structure are considered as outliers [7].
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The methods in last three groups are characterized as requiring high computational
efforts. However, sensor micro-controllers are limited in their performance. This motivates
us to use in our algorithm a method that demands for relatively low computing power.

There is the Local Outlier Factor algorithm among Nearest neighbor methods group
proposed by Breunig M. et al. for finding anomalous objects by measuring the local deviation
of a given object with respect to its neighbors [6]. The method is able to detect outliers
even if they form a dense cluster together regardless the data distribution. The method has a
complexity O(n?), where # is the number of data objects and is considered not a good choice
for devices with limited computing power. However, our theoretical analysis in Chapter 6
shows that original equations described in Chapter 4 can be significantly simplified and

adapted for the type of attacks considered here.
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Chapter 4
An Algorithm for LOF and Its Application
4.1 Steps for Calculations of LOF

In this section we present basic definitions and steps for computation of local outlier
factor (LOF) presented in [6]. The idea of LOF is based on the concept of local density.
Computation of LOF involves six steps (see Figure 4.1). Since each step is essential for
obtaining a final value of each data object and we will use these definitions for developing
some novel computation algorithms for special cases, we formally define computation of

each step. First we present an informal definition from [10].

Input: X, k | p,o,q € X

{

d(p,q) - distance between p and q

{

di(p) - k-distance

!

Nk(p) - k nearest neighbors of p

!

Rdk(p+o0) - Reachability Distance | pEN,(0)

{

Irdk(p) - Local Reachability Density

{

LOFKk(p) - Local Outlier Factor

Figure 4.1: Outlier Detection algorithm.

Definition 1. (Informal definition [10]:) An outlier is an observation that deviates so

much from other observations as to arouse suspicions that it was generated by a different

mechanism.

13
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For ease of communication, we use symbols o, p, and g to denote objects in a dataset X.
The notation d(p, g) is used to represent distance between two objects p and g. A formal

definition for d(p, q) is provided next.

Definition 2. (Distance d(p, q):) Distance between two points p and q, denoted as d(p, q),
is a nonnegative number, such that (i) d(p,p) = 0, (ii) d(p,q) > 0, if p # g, and (iii) for

three distinct points o, p, and q if d(o,p) = x and d(p,q) = y, then d(o,q) < (x + ).

m]
Above definition encompasses many methods for measuring the distance between two
points, including Euclidean distance. For ease of conveying concepts, most of the definitions

are accompanied by a running example.

Example 2. Let us consider four data points a(0), b(1), ¢(2), and d(5). The number in
the parenthesis represents the position on the x-axis. These points are shown in Figure 4.2.
We use Euclidean distance between points and the values of distance for all distinct pair of

points are shown as following.

Figure 4.2: Four data points used to illustrate calculations in the algorithm that follows.

d(a,b)=1; d(a,c)=2; d(a, d)=5; d(bc)=1; d(bd)=4; dc d)=3.

m]
In the next step, the outlier-detection algorithm calculates dy (p). It should be noted that
di(p) is neither distance of the furthest point nor the number of points in the neighborhood

of the point p. It is true that the neighborhood of p will have at least k points, but the actual
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Definition 3. (k-distance di(p) [6]) For any positive integer k, the k-distance of object p,
denoted as dy(p), is defined as the distance d(p, o) between p and an object o € X such
that:

(i) for at least k objects g € X \ {p} it holds that d(p, q) < d(p, 0), and

(ii) for at most (k — 1) objects g € X \ {p} it holds that d(p, q) < d(p, 0).

In our example, d>(.) of all the points are 2, but this is not true in general.

Example (Cont.). We consider four data points a(0), b(1), c¢(2), and d(5) from Exam-

ple 4.2. We use k = 2 for this example.
dr(a) = d(a,c) = 2; (c is the second nearest neighbor);
dr(b) = d(b,a) = 1; (a/c is the second nearest neighbor);
dy(c) =d(c,a) = 2; (a is the second nearest neighbor);
dy(d) = d(d, b) = 4; (b is the second nearest neighbor);

O
After di(-), the k-distance, calculation of all the points, the next step is to compute
Ni (). Intuitively, Ng(p) is the set of all points in the neighborhood of p whose distance is

less than or equal to dy(p). Formally, Ni(p) is defined as

Definition 4. (k-distance neighbors Ni(p) [6]) Given the k-distance dy(p) of p, k-distance
neighbors of an object p are the objects whose distance from p is not greater than the

k-distance of p, that is, Ny (p) = {q € X \ {p} | d(p,q) < dr(p)}.

O

Example (Cont.). We continue to use the same four points in Figure 4.2. Below are
2-distance neighbors of all four points.

Ny(b) = {a, c}; Ny(c) = {a, b}; Ny(d) = {b, c}
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Reachability Distance of an object p with respect to another object o, denoted as
Rdy(p < 0), is defined next. The definition is followed by computation of Rd,(b < a) for
points b and a in our example. It is important to note that we have extended the scope of
the definition in [6]. Since readings from all sensors could be identical in some cases, the

k-distance could be zero in those cases. Our definition takes care of those special cases.

Definition 5. (Reachability Distance Rdy(p < o)) The Reachability Distance of object p

with respect to another object o is defined as

Rdy(p < o) = max{dy(0),d(p, 0), €}, “4.1)

where € is a small constant that is introduced to avoid division by zero operation in further

calculations.

For the objects b and a in the Example 2, Rd>(b < a) = max{d>(a), d(a, b), €}
=max{2, 1, e} = 2. As will be clear later, computation of Rdy(p < o) for all pairs of points
in X may not be necessary.

For an object p € X, the values of Rdy(0) € Ni(p) and cardinality of Ni(p) are used to

compute Local Reachability Density, lrdy(p).

Definition 6. (Local Reachability Density lrdy(p) [6]) The local reachability density of an

object p is defined as

INe(p)]
Irdy(p) = , “4.2)
ZqENk(p) de (q — p)
where | Ny (p)| is the number of objects in Ni(p).
O

Example (Cont.). Now we illustrate computation of lrd;(a).

|Ni(a)| _ IN2(a)l
Y.geNy(a) Rdi(q < a)  Rdy(b < a) + Rdy(c < a)

Irdy(a) =
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Now,
Rdy(b « a) = max{dz(a),d(a, b), €}
=max{2, 1,e} =2,
and
Rd> (¢ « a) = max{d>(a),d(a,c), €}
=max{2,2, €} =2

Thus, Irdy(a) = 525 = 0.5

Following similar steps, we obtain values of lrd,(b), lrda(c), and lrd,(d):

|N2(b)| 2
Irdy(b) = - -1
rd ) = < bt Rdhe —b) 141
[N2(c)| 2
Irds(c) = - = 0.5:
rd) = e O+ Rab =) 242
N> (d 2
Irdy(d) = No(d)] = 0.25;

Rdy(b — d) + Rdy(c — d)  4+4
O

The final step in the algorithm is to compute Local Outlier Factor, LOFy(p) of all the
objects p € X. For defining LOF;(p) of an object p € X, value of Irdy(p), values of
Irdy(q) € Nir(p), and cardinality of Ni(p) are used, but the expression can be simplified

as shown below.

Definition 7. (Local Outlier Factor LOFy(p) [6]) The local outlier factor of p is defined as

Irdi(q)
LOF(p) = 2iqeN(p) zrd',ié) B (quNk(p) Irdi(q) 43)
g N (D) INc(p)| * Lrdi(p) ] '
O
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Example (Cont.). We complete the example after calculating LOF>(.) of all objects in the

example. a5y 4 e 1405
raz + lrd)(c + 0.
LOF>(a) = = = 1.5;
O = N @ rdoa) ~ 2505
lrdy(a) + Irda(c)  0.5+0.5
2(P) [Nk (b)| * Irda (D) 2% 1
S+1
LOF»(c) = Irdy(a) +1rda(b) 0.5+ 1 15

INk(c)| % lrda(c)  2%0.5
Irdy(b) +Irdy(c)  1+0.5

LOF>(d) = = =3;
2(d) IN ()| % Irdy(d) ~ 2 %0.25

After sorting these local outlier factors we obtain,
LOF,(d) = 3; LOF,(a) =1.5; LOF,(c) = 1.5; LOF,(b) =0.5

Obviously, top first outlier in this example is the object d.

4.2 Selecting k for Computing LOF in the Presence of Collusion Attack

Weaknesses of the Local Outlier Factor method are complexity O(n?) and selecting the
right k is not obvious. According to [6] the optimal value of k is defined as k = (ng — 1),
where n, is the number of reliable objects. For our case the simplest way to select  is based
on the assumption: there are considerably more ‘normal’ observations than ‘abnormal’

observations (outliers/anomalies) in the data. That hypothesis is enough to set

k =[n/2] 4.4)

to get decent results, where 7 is total number of observations.

Assume we have 10 data points, 3 of which are colluded (see Figure 4.3).

By calculating Local Outlier Factors (4.3) based on the average distance from every
point p to the nearest k = [n/2] = 5 points g we get that Local Outlier Factors of colluded
data points are significantly higher, that gives a mathematical instrument to exclude them
from further calculations. However, the simplicity has a drawback. Non-adaptive k leads
to the same number of calculations for different number of colluders, which in some cases

can make the value of LOF for outlier not so clearly prominent from reliable objects.
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5 nearest to x3 points 5 nearest to X, points
/ .W\
1),(2 ),<3 >,(4 ),(5 ),(6 7, , X
o 1 2 3 4 5 6 7 8 9 1o 11 12 13 14 15 16 17 13
A\ _J
~N ——
Reliable data Colluded data (outliers)

Figure 4.3: Local Outlier Factor method Conception.

There is a better way to determine the optimal k that uses k-means' clustering method.
The method splits all objects into a given number of clusters in which each object belongs
to the cluster with the nearest mean, serving as a prototype of the cluster. Assuming that
objects form two clusters: reliable n, and colluded n; objects, k-means clustering method

allows to find the optimal k defined in (4.5).

k=ng—1 (4.5)

Using this method allows us to consider the optimal & in calculations (see Figure 4.4 and
Section 5.1.4). In this case values of LOF for outliers reach the maximum, which makes

them clearly distinguishable from reliable objects.

6 nearest to x3 points 6 nearest to Xy points
./.M/\
(X1Xe X3 Xg X5 XeX7, , . %o, Xi0 X
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- _J
~ ——
Reliable data Colluded data (outliers)

Figure 4.4: Local Outlier Factor with optimal k.

is a part of the name of the method and it is not related to the k-distance definition.
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Chapter 5

Proposed Two Phase Data Aggregation Algorithms

In this chapter we present our algorithms. Logically and functionally our algorithms consist
of two phases: 1) Detection and removal of outliers, 2) True value estimation with remaining

data (see Figure 5.1). Table 5.1 contains notations used in descriptions for the algorithms.

Phase 1 Phase 2
X Detection X' True value R
raw readings of outliers | reliable readings | estimation estimated value

Figure 5.1: Two phases of our algorithms.

Table 5.1: Notations.

r® true value of the signal at time ¢

Tl estimated value of the signal at time ¢

ey) noise (error) of sensor s at time ¢

S a vector including numbers of all sensors

S’ a vector including numbers of reliable sensors

X an array of source data

X’ an array of reliable data

n number of sensors

m number of readings from each sensor

c number of compromised sensors

xgl) data from sensor s at time ¢

Wy weight that reflects the trustworthiness of a sensor s
X a vector of average readings from each sensor

X an average reading from sensor s

X a vector of average readings from reliable sensors
LOF;(X) | an average of all LOFy(xy)

LOFi(X) | an average of all LOFy(xy)

20
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5.1 Detection of Outliers

Following the logic of the construction of our algorithms, in this section we describe
methods that we apply in the first phase of our algorithms. This phase is dedicated to the

detection of outliers.
5.1.1 Detection of Outliers in a Single Step

As the name suggests the proposed algorithm detects outliers (that is, colluded data) and
excludes them from further calculations in a single step. In Chapter 4 we described how to
obtain a sequence of LOFy(x1), LOFy(x2), ..., LOFy(x,) for avector X = x1, x2, ..., X,. As
discussed earlier, higher the value of LOF of an object, higher the probability of the object
being a colluded object. The main challenge here is to set a criteria to split the sequence of

LOF values so that only colluded objects are excluded.

Example 3. Forthe data points depicted on the Figures 4.3 and 4.4, for k = 5 corresponding

LOF parameters are shown in the Table 5.2.

Table 5.2: Data points and corresponding LOF values

X1 X2 X3 X4 X5 X6 X7 Xg X9 X10
value of x; 1.5 |2 3 4 5 6 6.5 |15 17 18
LOF5(xy) 1.41 | 1.23 | 0.87 | 0.67 | 0.87 | 1.23 | 1.41 | 1.93 | 2.36 | 2.57
LOF5(X) 1.456
LOFs5(x;) < LOF5(X) | true \ true \ true \ true \ true \ true \ true \ false \ false \ false

Our empirical observations suggest that LOF} of an outlier is above LOF, which is

defined as the average of all LOF}, values:

o " LOF(x
LOF,(X) = 252! S"(x) (5.1)

Example (Cont.). So, for the dataset in Table 5.2 LOF5(X) = (1.41 +1.23+0.87+0.67 +
0.87+1.23+1.41 +1.93+2.36+2.57)/10 = 1.456
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Thus, data points xg(15), x9(17), and x10(18), whose LOF values are greater than

LOFs, are identified as outliers, and in reality are.

O
Using the notations introduced in Table 3.1, the Algorithm 1 provides a pseudo code

description of the Outliers Detection in a Single Step.

Algorithm 1: Outliers Detection in a Single Step Algorithm
Input : X[m,n]
Output: §’

1 Compute k = [n/2]

®
— >mox
2 Compute x; = ==—— for each sensor I < s < n

3 Compute LOFy (x;) for each sensor 1 < s < n

4 Compute LOF;(X) = w

sfors=1:ndo
if LOF(X,) < LOF;(X) then

6

7 S =8+ {s);
8 end

9 end

On the input we have a dataset X with m observations for each of n sensors. Output
of the algorithm is a vector S’ that consists of indices of sensors that are found reliable.
First, the algorithm calculates k& = [n/2]. Then the algorithm computes an average of all
m readings for each sensor xg, x;. This is repeated for all n sensors. Now we have a vector
X[n] of n data points. Third, compute LOFy(x;) for each element of X. Next, calculate
the average LOF(X) of all LOF,(X,). Then, compare each LOFy(x;) value with the
LOF(X). Those sensors whose LOF (X,) values are below the average are considered as

reliable.
5.1.2 Detection of Outliers Iteratively

A variation of the previous method is the method in which outliers are found iteratively.

Unlike the previous method, only one outlier with the maximum LOF value is removed in

every cycle.
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Values of LOF parameter are recalculated considering the remaining data points after
every iteration. A threshold and a ratio of the maximum LOF value to the minimum (see

Equation (5.2)) are used for finding a loop exit-condition.

. max(LOFi (X))
ratio = min(LOF.(X)) (5.2)

According to the [10] those elements that are deep inside a cluster have LOF values
close to 1. On the other hand, all outliers have LOF values significantly greater than 1.
This gives a basis to expect that if the ratio exceeds a certain threshold, then x; is an
outlier, where LOFy(x;) = max(LOF;(X)). Initially we set a threshold equal 2. Our
empirical observations and educated guess show that a value of 2 is good enough to detect
obvious outliers. However, keeping the same threshold for all iterations often leads to false
exclusion of reliable data. On the other hand, if we initially set the threshold too high it
causes accepting outliers as a reliable data. Again, our extensive empirical evaluations has
shown that if we increase the threshold every iteration using Equation (5.3) performance of

the algorithm is excellent.

ze(X
thresholds = —2¢X) L i hreshold, (5.3)
size(X) —1

where i is the current iteration number.
The Equation 5.3 changes the threshold value slowly, if the size of the set X large, but
the threshold is increased faster if the size of X smaller. Thus, as we near the elimination

of outliers, loop exit-condition is also close to be satisfied.
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Example 4. For the example considered in Section 5.1.1 four iterations are needed.

Initialization:

threshold = 2;
X={1523415,6,6.5,15 17, 18}
k=size(X)/2]1 =5

Iteration 1:
LOF5(X) ={1.41,1.23,0.87,0.67,0.87,1.23,1.41,1.93,2.36,2.57}
. 257 _
ratio = 525 = 3.8
(ratio > threshold) — X =X —{x10} ={1.5,2,3,4,5,6,6.5,15,17}

threshold = § %2 = 2.25

Iteration 2:
LOF5(X) ={1.41,1.23,0.87,0.67,0.87,1.23,1.41,2.82,3.37}
ratio = % =5

(ratio > threshold) => X = X — {xo} = {1.5,2,3,4,5,6,6.5, 15}
threshold = 8 x2.25 = 2.57

Iteration 3:

LOFs5(X) =1{1.41,1.23,0.87,0.67,0.87,1.23,1.41, 3.69}

ratio = % =55

(ratio > threshold) = X =X —{xg} =1{1.5,2,3,4,5,6,6.5}

threshold = % x2.57=73

Iteration 4:

LOFs5(X) =1{1.41,1.23,0.87,0.67,0.87,1.23,1.41}

(ratio < threshold) — X' =X

Initially we set a threshold and calculate k, which we keep the same throughout whole

the algorithm.
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In first iteration we calculate values of LOFs for each element of X. Then, find the ratio
of the maximum value of LOF, which is LOFs(x1g), to the minimum - LOFs(x4). Next, we
find that the value of the ratio is greater than threshold, which means that x¢ is an outlier.
Exclude x1o from the set X, recalculate a new value of threshold and continue iterations.

In every iteration we recalculate values of LOFs for remaining elements of the X set,
find new values of the ratio and threshold until the exit-condition is satisfied.

After completing the last iteration on the input set X, the elements in the set X' are

considered to be good data points.

]
Using the notations introduced in Table 3.1, the Algorithm 2 provides a pseudo code

description of the Detection of Outliers Iteratively.

Algorithm 2: Outliers Detection Iteratively
Input : X[m,n],threshold
Output: X’

— m 0
Compute x; = ==—— for each sensor 1 < s <n

1
2 Compute k = [n/2]

3 do

4 Compute LOF(x;) for each sensor 1 < s <n
max(LOFk(X))

min(LOF; (X))

wn

Compute ratio =

6 if ratio > threshold then
7 X =X -X;| LOF,(xy) = max(LOF (X))
8 n=n-1
9 end
10 threshold = 224X« threshold
size(X)-1
11 while ratio > threshold;

2 X' =X

Note that the example 4 excludes computation of average values for each sensor.
5.1.3 Detection of Outliers using Row-Wise Votes

Two outlier detection algorithms presented in previous sections, compute an average of

ensor. Then outlier detection algorithm identify outliers from these
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averages. The Algorithm 3 presented in this section identifies outliers from the n readings
that are reported at each time instance ¢. In other words, the Algorithm 3 processes raw
data in a row-wise manner. The outlier detection algorithm in Section 5.1.1 is applied to
each row of X for identification outliers, that is, LOF}, (xgt)) values are calculated for every
observation ng) of sensor s. The average LOF (x®) value is calculated for every vector of
observation x*). For those xgt) whose LOF values indicate them as reliable corresponding
elements of votes[m, n] array are assigned 1, otherwise it is assigned 0. This gives a table
of votes (see example in the Table 5.3) with average values of all votes for each sensor,
which is referred to reliability. Sensors that have reliability greater than a certain threshold
are considered as reliable. After completing the algorithm the vector S’ contains numbers
of sensors that are found reliable.

Table 5.3: Votes table

Sensors

instant S1 | S2 | s3 | 84 S5

r=1 1] 0|1 1 1

t=2 1] 0|1 1 0

t=3 1170 ]1]0 0

t=4 1 1 1 1 1

tr=5 110 |1 1 1
reliability | 1 |02 | 1 | 0.8 ]0.6

The advantage of this method is that it allows to set a threshold for excluding outliers; A
higher threshold will eliminate readings from a larger number of sensors, but the readings
from remaining sensors is expected to be highly reliable. The data shown in the Table 5.3
identify s1, 53, 54, 55 as reliable, if threshold is set to 0.5. But for same data sensors s, 53,

s4 are found to be reliable data, if the threshold is set to 0.8.
5.1.4 Detection of Outliers using K-means Clustering

The main challenge in using LOF based Outlier Detection algorithms is selection of an
optimal value of k. As will be shown in Chaper 7, using Equation (4.4) it is possible to

it is not very good if the number of colluded sensors is much less
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Algorithm 3: Outliers Detection Row-Wise Algorithm
Input : X[m, n],threshold

Output: §’

forr=1:mdo

—

2 Compute LOFy (xgl)) for current observation, where 1 < s <n
3 Compute LOF(x®) = w
4 fors=1:ndo

5 it LOF(x'") < LOF;(x®) then
6 | votesgt) =1;

7 end

8 else

9 | votesg) =0;

10 end

11 end

12 end

13 fors=171:ndo

14 if Zﬁ+msy) > threshold then

15 | S =8+ {s};

16 end

17 end

than n/2 (see Figures 4.3 and 4.4). As we have already mentioned, the optimal value of k
is (ng — 1), where n, is the number of reliable objects.

For that task k-means clustering method has potential to produce better results [4]. The
clustering algorithm splits data points into a given number of disjoint sets or clusters in
which each data point belongs to one of the clusters. A data point closest to the mean value

of all the data in a cluster serves as the prototype of the cluster.

Example 5. Let us consider data points from previous examples a(1.5), b(2), c¢(3), d(4),
e(5), f(6), g(6.5), h(15), i(17), and j(18) (shown in Table 5.2). The number in the
parenthesis represents the value of an observation. First, we set the number of clusters k2,

which is in our case 2 (for reliable and colluded data objects).

2Since the symbol k is an inherent component of k-means method terminology, we do not use other
symbols. Symbol k is used to denote the number of clusters only in this context. Further, we again use symbol
k in the meaning related to k-distance.
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Then select two data objects furthest apart a(1.5) and j(18). Next, define the initial
cluster means (centroids): Mean, and Meany, which are initially equal to the values of
the single data objects in the clusters.

The remaining data objects are now examined one at a time and assigned to the cluster
whose centroid is closest to the data point. The cluster centroid of a cluster is recalculated
every time a new data object is added to it. After nine steps the data objects are partitioned

into two clusters (see Table 5.4).

Table 5.4: k-means clustering: splitting into clusters

Clustery Clusters
step data objects meani data objects mean;
1 | a(l.5) 1.5 j(18) 18
2 | a(l1.5),b(2) 1.75 j(18) 18
3 | a(l.5),b(2),c(3) 2.17 j(18) 18
4 | a(l.5),b(2), c(3), d4) 2.63 j(18) 18
5 | a(l.5),b(2), c(3),d4), e(5) 3.1 j(18) 18
6 | a(l.5), b(2), c(3), d(4), e(5), f(6) 3.6 j(18) 18
7 | a(1.5), b(2), c(3), d(4), e(5), f(6), g(6.5) | 4 j(18) 18
8 | a(l.5), b(2), c(3),d(4), e(5), f(6), g(6.5) | 4 h(15), j(18) 16.5
9 | a(1.5),b(2), c(3),d4), e(5), f(6), g(6.5) | 4 h(15),i(17), j(18) | 16.7

Next we verify that each data point has been allocated to the right cluster. To do that,
we compare each data point’s distance to its current cluster centroid and to its distance the
other cluster’s centroid. The procedure is illustrated in the Table 5.5.

The entries in the table confirms that the set of data points has been partitioned into two
clusters correctly. Otherwise, data points that do not pass verification test are relocated
to the other cluster and the centroids are recalculated. This iterative relocation continues

until no more data movements are required.

O

To guarantee that the algorithm stops its execution, it is necessary to provide additional

conditions.
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Table 5.5: k-means clustering: checking

data point Distance to the | Distance to the
mean;(4) mean;(16.7)
a(l.5) 2.5 15.2
b(2) 2 14.7
c(3) 1 13.7
d4) 0 12.7
e(5) 1 11.7
f(6) 2 10.7
2(6.5) 2.5 10.2
h(15) 11 1.7
i(17) 13 0.3
j(18) 14 1.3

After partitioning the data into two clusters, we know the number of elements in each,
and assuming that reliable sensors are more than the colluded sensors, we can select the
optimal k using Equation (4.5), that is, k = (n, — 1), where n, is the number of elements
in the largest cluster.

An obvious question is why one would need to use LOF algorithm, since the data has
already been partitioned into two clusters. The answer is simple — k-means clustering
algorithm partitions any set of data into a given number of clusters irrespective of their
inherent property. But LOF values on a dataset give a measure for each data point that are

useful for verification of the partitioning process.

Example (Cont.). After determined that the size of the largest cluster {1.5, 2, 3, 4, 5, 6,
6.5} is 7T we set k =7 — 1 = 6 and apply Detection of Outliers in a Single Step Algorithm
(see Table 5.6)

Table 5.6: Data points and corresponding LOF values with optimal &

X1 X2 | X3 X4 X5 X6 | X7 Xg X9 X10
value of x 1.5 |2 3 4 5 6 6.5 |15 17 18
LOFg(xy) 135112 [ 0.89 059089 |12 [135]23 |275 298
LOFs(X) 1.55
LOFs(x;) < LOFg(X) | true ‘ true ‘ true ‘ true ‘ true ‘ true ‘ true ‘ false ‘ false ‘ false
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After we applied Outlier Detection Algorithm in a Single Step we detected the same
outliers as in Table 5.2, but now the values of outliers’ LOF are greater than using k = 5,

which makes outliers to standout for detection.

5.2 Combinations of Algorithms

After the first phase of the algorithm is completed, readings suspected as outliers have been
removed. In the second phase of the algorithm a true value is estimated from the remaining
sensor-readings for each time instance. At this phase we can choose from IF, RDAM, and
statistical estimation method. There are 12 possible combinations of four outlier detection
algorithms described in Section 5.1, and three true value estimation algorithms in Chapter 3.

In the following section, we describe some of them.
5.2.1 Detection of Outliers and Iterative Filtering

A combination of four methods for detection of outliers presented in Section 5.1 with IF
gives four algorithms. Below is an example of combination of Detection of Outliers in a

Single Step with 1IF. We call this algorithm LOF-single-IF.

Example 6. We use the same data from the Example 1 of Chapter 3 for this example. We
have a dataset X with m = 3 observations from each of n = 8 sensors. Sensors s| - Ss
are giving reliable data, while s¢ - sg are reporting false data, where readings from sg
are equal to the average of all sensors. Table 5.7 illustrates results of LOF-single-IF. The
algorithm excludes the impact of skewed readings from s¢ - sg. First phase: calculate
average readings X for each sensor. Next, calculate LOF}, for each average reading using
equation (4.4) k = [n/2] = 8/2 = 4. Then, compute LOF4(X) - average of all LOF4(Xxy).
After comparing each LOF4(Xy) to LOF4 (Y) we detect that sg, s7, and sg are outliers and

exclude them from further calculations. In the second phase we apply IF.
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Table 5.7: Detection of Outliers in a Single Step and IF (LOF-single-1F)

Sensor readings aggregate values
instant s=1 s=2 | s=3 s=4 s=5 s=6 s=7 s=38
t=1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 | 11.6157
t=2 10.75 9.63 9.73 10.21 10.43 15.75 1593 | 11.7757
r=3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 | 11.8486
° X 10.7400 | 9.6433 | 9.8067 | 10.2433 | 10.5833 | 15.7267 | 15.4833 | 11.7467
E LOF4(X) 1.0865 | 1.3148 | 1.0816 | 0.6061 1.0912 | 3.5704 | 3.3897 | 2.3257
= LOF4(X) 1.8083
LOFy(Xs) < LOF4(X) true ‘ true ‘ true ‘ true true false false false
round Sensor weights t=1 t=2 t=3
2 1 1 1 1 1 1 - - - 10.1460 | 10.1500 | 10.3140
5, 2 3.3993 | 3.1677 | 6.3423 | 457.8755 | 6.0378 - - - 10.1969 | 10.2064 | 10.3208
N 3 3.9715 | 2.7916 | 5.2642 | 1.3E+05 | 6.8935 - - - 10.2000 | 10.2100 | 10.3200
4 4.0059 | 2.7742 | 5.2146 | 1.4E+10 | 6.9254 - - - 10.2000 | 10.2100 | 10.3200

5.2.2 Detection of OQutliers and RDAM

We created four combinations of methods of detection of outliers described in Section 5.1
with RDAM. Below is an example of combination showing Detection of Outliers in a Single

Step with RDAM. We call this algorithm LOF-single-RDAM.

Example 7. Combination of Detection of Outliers in a Single Step and RDAM similarly
detects and excludes outlier readings from sensors s¢ - sg using LOF technique at the first
phase. After removing skewed data, RDAM method is applied in the second phase. Table 5.8

shows how the algorithm excludes the impact of readings from sg - s3.

Table 5.8: Detection of Outliers in a Single Step and RDAM (LOF-single-RDAM)

Sensor readings aggregate values
instant s=1 s=2 s=3 s=4 s=5 s=6 s=17 s=8
r=1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 | 11.6157
r=2 10.75 9.63 9.73 10.21 10.43 15.75 1593 | 11.7757
r=3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 | 11.8486
° X 10.7400 | 9.6433 9.8067 10.2433 10.5833 | 15.7267 | 15.4833 | 11.7467
é LOF4(X) 1.0865 | 1.3148 1.0816 0.6061 1.0912 | 3.5704 | 3.3897 | 2.3257
= LOF4(X) 1.8083
LOF4(X) < LOF4(X) true true true true true false false false
round Sensor weights =1 t=2 =3
1 0.0789 | 0.4362 0.081 0.3997 0.0041 - - - 9.9505 | 9.9616 | 10.0483
® 2 1.7568 | 8.4680 | 29.2168 15.1686 2.5746 - - - 9.9191 | 9.9054 | 10.0614
é 3 1.6380 | 9.6996 | 41.1109 | 1.2574E+01 | 2.4401 - - - 9.8740 | 9.8552 | 10.0168
fl* 4 1.4588 | 13.2041 | 83.6730 | 9.2561E+00 | 2.1298 - - - 9.8124 | 9.7856 | 9.9560
5 1.2570 | 22.0700 | 485.0123 | 6.4817E+00 | 1.7904 - - - 9.7731 | 9.7367 | 9.9206
6 1.1477 | 32.9083 | 5.50E+04 | 5.3023E+00 | 1.6143 - - - 9.7700 | 9.7300 | 9.9199
7 1.1388 | 33.9074 | 7.78E+08 | 5.2144E+00 | 1.6017 - - - 9.7700 | 9.7300 | 9.9199
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5.2.3 Algorithm Based on Combination of Weights and Votes

This algorithm is obtained by combining row-wise votes method described in 5.1.3 and IF.
In this combination, actually, there is no clear separation between detection of outliers phase
and estimation of true values phase. Having a table of votes (see Table. 5.3) the algorithm
uses its values as an indicator to use the corresponding reading in calculations or not to use
(see Equation (5.4)).

n
7O = Z Wy * x&’) * votesgt) (5.4)
s=1

If an indicator votesgt) is 1 then the algorithm uses the corresponding reading in the same

way as in IF. Otherwise the reading is simply ignored. Pseudo-code of the algorithm is

shown in Algorithm 4.

Algorithm 4: Weights and Votes Algorithm
Input : X[m, n]
Output: 7

1 fortr=1:mdo

2 Compute LOFy (ng)) for current observation, where 1 < s < n
3 Compute LOF(x®) = w
4 fors=1:ndo

5 it LOF(x") < LOF(x”) then
6 | votesgt) =1;

7 end

8 else

9 | votesgt) =0;

10 end

11 end

12 end

13 W1,

14 while 7 notConverged do
15 fort=1:mdo

16 | 7O = D Wk xgt) ¢ votesgt)
17 end

18 Compute W;

19 end
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5.2.4 Detection of Outliers and Statistical Estimation

For our studies, we combined Detection of Outliers in a Single Step and Detection of
Outliers using K-means clustering method, described in Sections 5.1.1 and 5.1.4, with
Statistical Estimation, described in Section 3.3. As presented in Chapter 7, these two
combinations produce best results in our experiments. There we call these algorithms

LOF-single-weightedSum and k-means-LOF-single-weightedSum, respectively.

Example 8. Let us apply LOF-single-weightedSum for the same data set used in previous
examples. At the first phase the algorithm similarly detects and excludes outlier readings
from sensors s¢ - s3. At the second phase Statistical estimation method is applied (see
Table 5.9).

Table 5.9: Detection of Outliers in a Single Step and Statistical estimation

Sensor readings aggregate values
instant s=1 s=2 | s=3 s=4 s=5 s=6 s=17 s=38
t=1 10.73 9.61 9.71 10.20 10.42 15.45 15.13 | 11.6157
t=2 10.75 9.63 9.73 10.21 10.43 15.75 1593 | 11.7757
r=3 10.74 9.69 9.92 10.32 10.9 15.98 1539 | 11.8486
° X 10.7400 | 9.6433 | 9.8067 | 10.2433 | 10.5833 | 15.7267 | 15.4833 | 11.7467
é LOF4(X) 1.0865 | 1.3148 | 1.0816 | 0.6061 | 1.0912 | 3.5704 | 3.3897 | 2.3257
= LOF4(X) 1.8083
LOF4(x,) < LOF4(X) true ‘ true ‘ true ‘ true true false false false
% t=1 t=2 t=3
£, U 0.0001 | 0.0017 | 0.0100 | 0.0044 | 0.0752 - - -
N weights 0.9161 | 0.0529 | 0.0091 | 0.0207 | 0.0012 - - - 10.6507 | 10.6699 | 10.6685
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Chapter 6

Estimation of LOF for Simple Datasets

LetG ={g1, g2, ", gng} be a set of readings from n, ‘good’ sensors. In our study, a reading
from a ‘good’ sensor means that the sensor, the embedded device, and communication from
the embedded device to the destination are normal; there is no hardware, software, and
network issues have changed or altered the reading. Similarly, let B" = {by, b2, -, by, +1}
be a set of ‘bad’ readings from b, + 1 sensors. A ‘bad’ reading may be due to several
reasons, including but not limited to, a faulty sensor or a reading altered by an adversary
or a colluder. If a collusion attack of the type described in [18] has occurred, then one of
readings b; € B’ is the average of the remaining n;, from B” and all n, readings from G.
Without loss of generality, let us assume that b, 4 is the average reading introduced by the

colluder. Let us define B = B’ \ {b,, +1}, and av = b,, 1, where

ng np .
i=1 8+ 22, bj

av = 6.1
ng +nyp ( )
Mg M Mo
— o00%o0o s oY
G av B

o

Reliable Data Points g, ..., ng
Colluded Data Points by,...,b,,
Colluded Data Point (u - the average value of all data points in G and B)

<

Value of all data points in G
Value of all data points in B

<

Figure 6.1: Collusion Attack Model.
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For simplifying presentation, initially we assume that all readings in G are same and
equal to ug and similarly, we also assume that readings in B are equal to y;,. Then the value
of colluded reading b,, 11 = av is given by,

_ Ng Mg Ny [y
ng +nyp

u (6.2)

Later, we will discuss how this restriction can be eliminated. By these assumptions,
d(gi,gj) = 0for 1 < i,j < ng and also, d(b;,b;) = 0 for 1 < i,j < n,. For real-
world situations, there should be considerably more ‘good’ observations than ‘bad’, that is,
ng > (np + 1).

In this situation, we want to theoretically determine the value of LOF; for different
range of values for k. For good sensors and av, we need to consider only one case, but
for bad sensors, we have to consider three cases: k < min{ng, n,}, k = min{ng, n,}, and

min{ng, np} < k < max{ng, np}.

Lemma 1. For g;,g; € G, and 1 < k < max{ng, np},
(1) di(gi) =0,

(2) Ni(gi) = G\ {gi},

(3) INk(8i)| = ng — 1,

(4) Rdy(gj < &) =€,

(5) Irdy(gi) = ¢.

O

Proof. The proofs of all items of the Lemma start from definitions. Since k is less than
ng, the number of objects in G, a k-nearest neighbor dy (g;) of any object g; € G is another
object in G. Because of the assumption that all readings in G are equal and by Definition 3,
we have dy(g;) = 0.

By Definition 4 all objects in G except the object g; are in Ny (g;), the set of the k-nearest
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The observation just made leads us to the fact that there are (ng — 1) objects in Ny (g;).

By Definition 5, and the fact that dy (g;) = d(g;, g;), forall g;, g; € G,

Rdy(g; < gi) = max(di(gi), d(gi gj), €) = €.

By Definition 6,
| Nk (gi)l

Ird ( ) = X
e ZgjeNk(gi) Rdi(g; < 8i)

Now using the results we have already proved,

ng_

1
(ng — e €

Irdi(gi) =

This completes the proofs. O

Theorem 1. Forall g; € G, and 1 < k < max{ng, np}, LOF(g;) = 1.

m]
Proof. By Definition 7, LOF;(g;) forg; € G
2gen; (g rdi(q)
LOF;(g;) = - (6.3)
80T NGl - Irdi(g0)
2igeG\ (gt Irdi(q)
= - (by Lemma 1) (6.4)
(g~ D -lrdi(e)
(ng—1)-1
=—7-= 1 (by Lemma 1) (6.5)
(ng—1)- <
m]
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Next we present a lemma for the av.

Lemma 2. For g; € G, av, and 1 < k < max{ng, ny},
(1) dy(av) = "lomtel,

(2) Ni(av) = G,

(3) INk(av)| = ng,

(4) Rdi(g; — av) = ot

(5) Irdy(av) = %

]
Proof. A k-nearest object of av can be either in G or in B, which are at distances |u — |

and |y, — p|, respectively. After substituting expression for ¢ from Equation (6.2) in |u— |

and |up — p|, and then some simplifications we get,

”b'|llb_ﬂg|
| — pgl = W
and
ng - |I~lb_/1g|
|y — pl = W-

Since it was assumed that n, > (n, + 1), we have |u — pg| < [up — ul. Thus, all object
in G are at k-distance from av, and

np - |Nb - .Ug|

dilav) = ne + ny
g

Also, a k-nearest neighbor of av is in G and distance between any two objects in G is 0,
by Definition 4 all n, objects in G are in the set Ny (av), that is, Ny (av) = G.

From above discussion, it is clear the value of [Ny (av)| is ny.

By Definition 5,

Rd(g; < av) = max(di(av),d(av, g), €).
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We have already proved that d(av, g;) = |u — pg| and dy(av) = |u — ug|. Hence,

np - |,ub - ,ug'
Rdi(gi < av) = |u— pgl = ——.
ng +nyp

Finally, by Definition 6,

| Nk (av)]

Irdi(av) = .
¢ ZgieNk(av) de(gi — aV)

After substitution of values of Rdy(g; < av) in the equation above, we get

rdi(av) = = = )
ng - | —pgl |1 — pgl nb'|,ub—,ug|

O
Theorem 2. For g; € G and 1 < k < max{ng, np}, LOF(av) = %
O
Proof. By Definition 7,
2geNc(av) [rdi(q)
LOF, = 6.6
V) = 08 @l Irde(ar) 6.6)
Ird
- —ZqEG £(9) (by Lemma 2) (6.7)
ng - lrdy(av)
np - |/~‘b - ,ug|
=— (by Lemmas 1 and 2) (6.8)
(ng +np) - €
O
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Lemma 3. For b;,b; € B, and 1 < k < min{ng, np},
(1) di(bi) =0,

(2) Ni(bi) = B\ {bi},

(3) INk(bi)| = np — 1,

(4) Rd(bj < b;) = €,

(5) lrdy(b;) = L.

O
Proof is similar to the proof of Lemma 1, and omitted for avoiding duplicity and

conserving space.

Theorem 3. For b; € B and 1 < k < min{ng, np}, LOF(b;) =1,

Proof. By Definition 7, LOF(b;) for b; € B

|\ DgeNi(b) rdi(q)
LORb) =18 oo - Ird () 9
e\ Irdi(q)
Ty = 1) - Irdi(by) (by Lemma 3) (6.10)
(mp—1) -1
= m =1 (by Lemma 3) (6.11)
O

Lemma 4. For b;, b; € B, av, and k = min(ng, ny),
(1) di(by) = |“ents

(2) Ni(bi) = {av} U B\ {bi},
(3) INe(Bi)| =

)

( —
(4) Rdi(b; — b)) = |t
Rdi(av < b;) = —ngr(:ir_,: 2|
Ng+np
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Proof. Since k is equal to the number of objects in B, the k-nearest neighbor of any object
in B must be an object that is not in B. Since the object av is closest to the objects in B, it
is the k-nearest neighbor of all objects in B. The distance between an object b; € B and av
is %, and equals to dy (b;).

Since distance between any objects b; € B is 0 and the k-nearest neighbor of b; is av,
then by Definition 4 object av and all objects in B except the object b; are the k-nearest
neighbors. Thus, N¢(b;) = {av} U B\ {b;}.

From the proof above, it is clear that b; € B, |N¢(b;)| = nyp.

By Definition 5, Rdy(b; < b;) = max(di(b;),d(b;, bj),€e) and Rdy(av < b;) =
max(dy(b;), d(b;,av),€). Already we have proved that dy(b;) = % Hence,

de(b] «— bl) = M and de(aV - bl) _ ng'lﬂb_ﬂg|.

ng+np g +iip
By Definition 6,
[Nk (bi)
Irdy(b;) = (6.12)
T Zpem Rdi(p < bi)

Ny (b;

_ | Nk (b)) . 6.13)
2peN; (b\av) Rdk(p < bi) + Rdy(av « b;)
Substitution of all values of Rdy(b;) and simplification leads to the desired result,

ne +n

Irdy () = —(———. 6.14)
ng - ’ up — 'ug|

O

Theorem 4. For g; € G, b; € B, av and k = min{ng, n,}

LOF (b)) =1 + 22

(np)?
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Proof of Theorem 4. By definition of LOFy(b;) we have,

quNk(b) Irdi(q)
LOF.(b) = ; 6.15
OFi(bi) [Nk (bi)| - lrdi(b;) o
Irdi(av) + ylrd
_ rdi(av) + Xgep\ipi Irdi(q) (by Lemma 4) (6.16)
np - lrdi (b;)

_ Irdi(av)+ +quB\{bi}lrdk(Q)

= 6.17
np - lrdk(b,-) np - li’dk(bi) ( )
Irdi(av)+ (np — 1) - lrdi(b;)
— + 6.18
np - lrdk(bi) np - lrdk(bi) ( )
Now using results from Lemmas 2 and 4, and doing some simplifications we get,
nge — Ny
LOF(b) =1+ =2~
O
Lemma 5. For b;, b; € B, av, and, min{ng, n,} < k < max{ng, np}
(1) di(bi) = |p — pel,
(2) Ni(bi) = G U {av}U B\ {b;},
(3) INk(bi)| = ng + np,
(4) Rdi(bj < bi) = |up — pel,
Rdi(av < bi) = |up — pgl,
Rdi (i < bi) = |up — gl
_ 1
(5) lrdk(bi) = m
O

Proof. Since k is greater than the number of objects in B, a k-nearest neighbor of any object

in B is an object in G, which gives k-distance, di (b;) = |up — pgl.
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Since distance between any two objects in B is 0, a k-nearest neighbor is in G, and
distance between any objects in G is also 0, then by Definition 4 all objects in G, object av,
and all objects in B except objects b; are in the k-nearest objects set denoted as Ny (b;).

Since all objects in G, object av, and all objects in B except the subject b; are in Ni (b;),
the number of members of Ny (b;) is calculated as ny + 1 + (n, — 1) = ny + ny,

By Definition 5,

Rdy(bj < b;) = max(dy(b;),d(b;, bj), €), (6.19)
Rd(av « b;) = max(di(b;),d(b;, av), €), (6.20)
Rdy(gi < b;) = max(dy(b;),d(b;, g), €). (6.21)

We have already proved that dy(b;) = |up — uel. Hence, Rdi(b; < b;) = |up — pgl,

Rdi(av < b;) = |up — pgl, and Rdy(g; < b;) = |pp — pgl.

By Definition 6,
| Nk (bi)]
Irdi(b;) = (6.22)
2peN; (b)) Rdi(p < b;)
_ |Ni(B)| 623
2peB\b; Rdi(p < bi) + Rdi(av < b)) + 3 ye Rdi(q < by)
Now substitution of expressions we have already found for Rdy (b; < b;),
Rdy(av < b;), and Rdy(g; < b;) in the expression above, we get the desired result:
1
lrdi(b;)) = —. (6.24)
|ty — pgl
O

Theorem 5. For k > min{ng, ny}, g; € G, b; € B, and av

LOF(by) = "ttt 4 Ly ol

(ng+np)-€ np ng+np”
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Proof of Theorem 5. By definition of LOFy (b;) we have,

2qen; (b Irdi(q)

INk(bi)| - Irdi(b;)

_ 2gec lrdi(q) + lrdi(av) + Ygep\iny) lrdi(q)
B (ng + np) - Irdy (b;)

2qec lrd(q) Irdi(av)

LOFi(b;) = (6.25)

(by Lemma 5) (6.26)

= + (6.27)
(ng +nyp) - lrdi(b;))  (ng +mnyp) - lrdi(b;)
2qeB\(b) Irdi(q)
: (by Lemmas 1, 2, and 5) (6.28)
(ng +mp) - Irde(b) >
. - -1
_ ng - |y — Mgl + i + np (6.29)
(ng+np)-€ np ng+ny
O
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Chapter 7

Experimental Results

The experimental evaluation of the proposed algorithms aims to verify their reliability and
efficiency in the presence of a collusion attack. Since the RDAM performs best in the
presence of collusion attack [18], we use this algorithm’s performance as a benchmark
for measuring that of the proposed algorithms. In order to evaluate the accuracy of the
investigated algorithms in the presence of collusion attack, we assume that an attacker

compromises ¢ sensor nodes out of n nodes in a cluster and ¢ < n/2.
7.1 Experimental Settings

Unless otherwise stated, we reconstruct the same conditions that are used in [18] for
generating datasets for evaluation of the proposed algorithms. We used Matlab 9.0 (R2015b)
as our programing platform. We model a cluster of n = 20 sensor nodes and assume that
these 20 nodes reports their readings to a cluster head or data aggregator. Each sensor
gathers m = 400 readings before sending them to the cluster head. For consistency and fair
comparisons, the original signal is generated using the Equation (7.1), which has been used

in [18].

2t
r® =5-n-sin(\/_ ) (7.1)
2.7

where t € {1..m}.
To generate synthetic data sets X, we add noise egt) to the original signal ) as shown

by Equation (7.2)

xgt) =r® 4 eg). (7.2)

We use Gaussian distribution for both stochastic noise for readings from reliable sensors
and correlated noise for readings from colluded sensors. In our experiments for the sensors
that are considered reliable we add the same biased error as in [18] and is defined by

Equations (7.3) and (7.4).

44
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by ~ N(0,07) (7.3)
el ~ N(by, 0% (7.4)

Moreover, we conduct experiments with another type of additive noise signals for the
reliable sensors. Equation (7.5) describes this type of noise signal. Note that the baseline

variance of the noise is increased by a multiplicative factor of /s for the sensor with id 5.3

e ~ N(bg,\s - o2) (7.5)

For errors of colluded readings we use the same models, which are described by Equa-
tions (7.6) and (7.7) as in [18]. For noise we also use a modified model described by

Equation (7.8). In this modified model the multiplicative factor /s is removed (or set to 1).

b, ~ N(0,3 - op), (7.6)
e’ ~ N(b.,5-s-0?) (7.7)
e~ N, 5-0?) (7.8)

Parameters used in our experiments:

* each experiment is repeated 200 times and results are averaged;

for all experiments o} = 4;

value of standard deviation o in each experiment is varied from 1 to 5;

* number of compromised sensors ¢ in each experiment is varied from 3 to 8.

3We noted in Chapter 2 that sensor networks are often used in hostile environment. So it could happen
that every next sensor is exposed to greater external influence and therefore noise increases accordingly.

www.manharaa.com




46

We use only one discriminant function in our experiments g(d) = d ~I (see details
in [18]) for iterative filtering phase of RDAM algorithm. The selection of this discriminant
functions is compelled by the fact that out of four discriminant functions used for evaluations
in [18], this function had shown the best performance.

For fair comparisons performance of the RDAM and our proposed algorithms, we used

same sets of generated data for both methods.
7.2 Performance Evaluation Metric

To measure performance of the proposed algorithms we use two metrics: Root Mean
Squared error (RMSE) and the Maximum Error (ME) defined by Equations (7.9) and
(7.10), respectively. The RDAM algorithm used RMSE for evaluating performance of the
algorithm against existing algorithms. We added ME to the metric for capturing worst-case

performance.

m () — 7(0y2
RMSE = \/ 2z € ) , (7.9)

m

where @ and 7 are true values and estimate of true values of the signal at time ¢,
respectively.

ME = mvax(lr(l) — 7, (7.10)
t

where max is the function that returns maximum value for all # and that |.| is absolute value
function. The efficiency is evaluated by the number of iterations needed for the IF algorithm

to converge.
7.3 Results

We present some of our typical observations from our extensive simulation results. For ease
of comparison we illustrate our results as line plots. Moreover, we included corresponding

data in the table format for those who want to examine the results more closely and critically.
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We evaluated all the proposed algorithms, but we report results only for those algorithms
that have produced best results. It should be noted that with rare exceptions, all our
algorithms performed better than the RDAM algorithm.

The first set of results is for datasets that are (statistically) identical to those used
for experiments in [18]. For visual display of the results, Figure 7.1 show plots RSME
vs standard deviation for our proposed algorithms and RDAM algorithms. For detailed
comparisons data is shown in Table 7.1. It is clear from the table and the plots that
performance of our algorithm is as good or better than that of RDAM. For the case with 8

colluders the RMSE for our methods are 3-13% lower than that of the RDAM algorithm.

©- 3 colluders
| [0~ 3 colluders 16| =%~ 4 colluders

—-%-—4 colluders — & =5 colluders
— & -5 colluders
—%— 6 colluders
|_| —#*—7 colluders
—*— 8 colluders

——6 colluders
| | —*—7 colluders
—*—8 colluders

wsfF—_——=c-- 4 08 _———_===T

0.8

0.6 1 0.6
04 . . . . . . . 04 I I I I I I I
1 1.5 2 25 3 35 4 4.5 5 1 15 2 25 3 3.5 4 45 5
standard deviation standard deviation
(a) RDAM (b) LOF-single-RDAM
©--3 colluders. ©-3 colluders
1.6 | —x-— 4 colluders ’K 16| —x-- 4 colluders L
— & =5 colluders — & =5 colluders
—4—6 colluders —6—6 colluders
|| —*—7 colluders A 14k —+#*—7 colluders
—%—8 colluders : —%—8 colluders

08

0.6

0.4 0.4

I I I I I I L L L L L L L L
1 15 2 25 3 3.5 4 4.5 5 1 15 2 25 3 3.5 4 4.5 5

standard deviation standard deviation
(c) LOF-single-weightedSum (d) k-means-LOF-single-weightedSum

Figure 7.1: RMSE with original conditions of collusion attack
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Table 7.1: Evaluation parameters for algorithms with original conditions of collusion attack®

o=1 =2 o=3 o=4 o=5
£ -] £ = £ -] £ s £ =
g ¥s5 & ZE| g %5 E ZE| g %8 E ZE| g %5 E ZE| ¢ E5 £ ZE
E E5 £ 8% E E5 £ 8% E E5 £ 8% E E5 £ 8% E E5 £ 8%
colluders = 3
RDAM 0.6574 1.4508 30.1 - 0.7505 2.0504 182 - 0.8934 2.6717 132 - 1.1022 33903 11.6 - 1.3304 4.1212 10.5 -
LOF-single-RDAM 0.6838 1.4883 294 3.6 |0.7538 2.0507 18.1 23 ]0.8938 2.6747 13.1 2.1 1.1022 33940 11.1 23 1.3273 41203 9.7 25
LOF-single-weightedSum 0.5372  1.2022 - 3.6 |0.7108 1.9284 - 23 | 0.8947 2.6533 - 2.1 1.1192  3.3929 - 2.3 1.3524 41712 - 25
k-means-LOF-singl ightedSum | 0.4936 1.1485 - 3.5 |0.7083 19174 - 2.2 |0.8908 2.6435 - 2 1.1309 3.4292 - 2 1.3899 4.2508 - 2
colluders = 8
RDAM 0.8259 1.9498 335 - 0.8757 24223 20 - 1.0750 3.2259 154 - 1.3449 4.0963 13.6 - 1.6044 49986 12.2
LOF-single-RDAM 0.8473 1.9845 305 9.3 |0.8788 24518 189 82 1.0742 32310 13.3 8 1.3359 4.0855 11.6 8 1.5771 49631 10.1 8
LOF-single-weightedSum 0.7880 1.8029 - 9.3 | 0.7918 22175 - 8.2 1.0235 3.1051 - 8 1.2960 3.9414 8 1.5513 4.8549 - 8
k-means-LOF-singl ightedSum | 0.7505 1.6621 - 8.7 |0.7628 2.1627 - 8 1.0173  3.0911 - 8 1.2960 3.9414 - 8 1.5513  4.8549 - 8

Figures 7.2, 7.3, 7.4 and Table 7.2 report results when sensor readings for reliable
and compromised sensors is generated by noise models described by Equations (7.5) and
(7.8), respectively. It is not difficult to see from the plots that the proposed algorithms
reduce RMSE values significantly. The accuracy of the proposed algorithms is especially
noticeable for larger number of colluders and higher standard deviations. As can be seen
from Figure 7.6, for the case with 8 colluders the RMSE for our methods is 18% to 53%
lower when standard deviation is varied from 1 to 5. The RMSE improvement linearly
grows from about 18% to about 50% as a standard deviation increases from 1 to 3. For

standard deviation 3 to 5 the improvement rate slows down, but improvement continues.

Table 7.2: Evaluation parameters for algorithms with changed conditions of collusion

4
attack
o=1 o=2 o=3 =4 o=5
g £ ¢% g £ g3 g £ £3 g £ £3 £ £ 23
E g 3 é € g 3 g € g B g € S B g g g B ‘g
2 =B 8 2 E 2 =5 s = E 2 Z B s = E 2 Z B K} = E 2 =5 s 2 E
| colluders = 3 |
RDAM 1.0059 2.7799 4.6 - 1.7168 5.1185 44 - 25316 7.6470 4.5 - 3.3142 10.0966 4.4 - 4.0603 12.6340 4.5 -
LOF-single-RDAM 1.0014 27872 52 62 1.7168 5.1185 4.7 57 |25316 7.6470 48 49 |3.3142 10.0966 4.8 3.9 |4.0603 12.6340 49 3.5
LOF-single-weightedSum 0.9692 2.8874 - 6.2 1.7075 5.3249 - 5.7 {24209 7.6926 - 49 |3.0739  9.8150 - 3.9 |3.7481 11.9457 - 35
k-means-LOF-single-weightedSum | 0.9573 2.8315 - 5.6 1.6414 5.1075 - 4.6 |23447 73742 - 4 3.0361  9.6776 - 3.6 |3.7237 11.9046 - 33
colluders = 8

RDAM 24005 44884 75 - 3.6886 7.5213 49 - 5.1274 10.7595 4.2 - 6.6793 14.1918 4 - 8.1766 17.3392 3.9 -
LOF-single-RDAM 2.2845 4.3970 10 6.8 |25574 69895 213 9.1 3.2860 10.1231 20.6 9.6 |4.1614 13.1627 18.6 94 |5.0825 16.0328 19.6 89
LOF-single-weightedSum 1.9412 4.1053 - 6.8 |2.5341 6.7288 - 9.1 2.6409 8.2082 - 9.6 |3.1995 10.2005 - 9.4 |3.8542 123122 - 8.9
k-means-LOF-single-weightedSum | 1.9694 4.1640 - 6.7 |2.3306 6.2936 - 8.6 |25331 7.9323 - 8.9 |[3.1282 10.0773 - 8.7 |3.7671 12.0540 - 8.4

Assessing performances of the algorithms in terms of the maximum error (defined

by (7.10)), it can be concluded that all our proposed methods give approximately the

“For conserving space we provide data only for cases with 3 and 8 colluders.

www.manharaa.com



4.5

49
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—-%-= LOF-single-RDAM

| | — & — LOF-single-weightedSum

—— k-means-LOF-single-weightedSum

2.5 3 3.5
standard deviation

Figure 7.2: RMSE with changed conditions of collusion attack with 3 colluders

5.5

RMSE

—-%-= LOF-single-RDAM

—— k-means-LOF-single-weightedSum

— & - LOF-single-weightedSum //

2.5 3 3.5 4.5
standard deviation

Figure 7.3: RMSE with changed conditions of collusion attack with 5 colluders
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—-%-— LOF-single-RDAM
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Figure 7.4: RMSE with changed conditions of collusion attack with 7 colluders
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—-%-— LOF-single-RDAM
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—<— k-means-LOF-single-weightedSum
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Figure 7.5: RMSE with changed conditions of collusion attack with 8 colluders
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RMSE % reduction

— & — LOF-single-weightedSum
—— k-means-LOF-single-weightedSum

1 1.5 2 2.5 3 3.5 4 4.5 5
standard deviation

Figure 7.6: RMSE reduction with changed conditions of collusion attack with 8 colluders
comparing to RDAM

same level of maximum error, except LOF-single-weightedSum and k-means-LOF-single-
weightedSum, which show significantly lower ME as can be seen in Figure 7.7 and Table 7.2.

Figures 7.2, 7.3, 7.4, 7.5, and 7.7 also show that two of our methods — LOF-single-
weightedSum and k-means-LOF-single-weightedSum — outperforms all others. For a given
level of added noise level and number of colluders, their RMSE and ME are almost identical.
The reason for their success is their ability to identify colluded readings with fairly high
degree of accuracy (see Tables 7.1 and 7.2). For original conditions of collusion attack for
o = {3,4,5} and 8 colluders the estimated number of colluders is exactly 8.

Recall that algorithms LOF-single-weightedSum and k-means-LOF-single-weighted-
Sum do not use iterative filtering. Thus, they reduce computation time and do not suf-

fer from weaknesses of the iterative filtering algorithms.
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(a) The maximum error for collusion attack with
3 colluders

(b) The maximum error for collusion attack with
5 colluders

T T T T T T 18 T T
16 ©-- RDAM ©-RDAM
— 8 — LOF-single-weightedSum — & —~ LOF-single-weightedSum -
—o— k-means-LOF-single-weightedSum 16 |- | —®—k-means-LOF-single-weightedSum - i
14
141 1
s g
5 512t ——=
£ =
£ E i
3 g1of 1
£ € -
8r - = 7
o A
-
-
6 R~ 7
2 I I I I I I 4 . . . . I .
1 15 2 25 3 3.5 4.5 1 1.5 2 25 3 3.5 4.5 5

standard deviation

(¢) The maximum error for collusion attack with

7 colluders

standard deviation

(d) The maximum error for collusion attack with

8 colluders

Figure 7.7: The maximum error with changed conditions of collusion attack
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Chapter 8

Conclusion

In this work, we concentrated on the development of outlier detection methods. We
described the conception of local outlier factor, which plays a key role in our methods.
Then we proposed several two phase outlier detection algorithms.

The main feature of our algorithms is detection and removal of outliers before estimation
true value. First, this increases the accuracy by removing the influence of outliers in
aggregated result. Second, having only reliable data true values can be estimated non-
iteratively, which decreases computational cost.

We used the RDAM [18] as the benchmark for comparison since it has shown best results
against original collusion attack. We tested RDAM and our algorithms against collusion
attacks considered in [18]. Moreover, we created examples of collusion attack scenario that
were not considered in [18]. Under these novel attack scenario the proposed algorithms
performed much better than the RDAM.

We have presented experimental results that show that (1) the estimates have higher
accuracy than RDAM and (2) the algorithms have better efficiency than that of the RDAM.
We observed that detecting local outliers for sensor readings using LOF is efficient.

Since computation of local outlier factor is not a low computational-cost method, we
have found expressions that are useful for calculating outlier factors for simple data. While
conducting this research we changed some original definitions and discovered promising

opportunities that can lead to new clustering methods, which will be a scope for future

work.
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