
www.manaraa.com

University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2015-11-12

Secure Data Aggregation for Sensor Networks in
the Presence of Collusion Attack using Local
Outlier Factor
Anes Yessembayev
University of Miami, anes@bk.ru

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Yessembayev, Anes, "Secure Data Aggregation for Sensor Networks in the Presence of Collusion Attack using Local Outlier Factor"
(2015). Open Access Theses. 589.
https://scholarlyrepository.miami.edu/oa_theses/589

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/589?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

www.manaraa.com

UNIVERSITY OF MIAMI

SECURE DATA AGGREGATION FOR SENSOR NETWORKS

IN THE PRESENCE OF COLLUSION ATTACK

USING LOCAL OUTLIER FACTOR

By

Anes Yessembayev

A THESIS

Submitted to the Faculty

of the University of Miami

in partial fulfillment of the requirements for

the degree of Master of Science

Coral Gables, Florida

December 2015

www.manaraa.com

©2015

Anes Yessembayev

All Rights Reserved

www.manaraa.com

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

SECURE DATA AGGREGATION FOR SENSOR NETWORKS
IN THE PRESENCE OF COLLUSION ATTACK

USING LOCAL OUTLIER FACTOR

Anes Yessembayev

Approved:

________________ _________________
Dilip Sarkar, Ph.D. Geoff Sutcliffe, Ph.D.
Associate Professor of Computer Science Professor of Computer Science

________________ _________________
Subramanian Ramakrishnan, Ph.D. Dean of the Graduate School
Associate Professor of Mathematics

www.manaraa.com

YESSEMBAYEV, ANES (M.S., Computer Science)

Secure Data Aggregation for Sensor Networks (December 2015)

in the Presence of Collusion Attack

using Local Outlier Factor

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor Dilip Sarkar.

No. of pages in text. (55)

Aggregation of data from multiple sensor nodes is usually done by simple methods such

as averaging or, more sophisticated, iterative filtering methods. However, such aggregation

methods are highly vulnerable to malicious attacks where the attacker has knowledge of

all sensed values and has ability to alter some of the readings. In this work, we develop

and evaluate algorithms that eliminate or minimize the influence of altered readings. The

basic idea is to consider altered data as outliers and find algorithms that effectively identify

altered data as outliers and remove them. Once the outliers have been removed, use some

standard technique to estimate a true value.

We calculate local outlier factor (LOF) for each data point. We propose methods for

computing threshold values from these LOF values. The data points that have LOF value

above a calculated threshold value are removed before computing an estimated signal from

the data points reported by the sensors. Thus, the proposed data aggregation algorithm

operates in two phases: removal of outliers and computation of an estimated true value

from the remaining sensor data. Extensive evaluation of the proposed algorithms show that

they significantly outperform all existing methods. For simple cases, we have developed

expressions for calculating LOF values.

www.manaraa.com

Table of Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Data Aggregation Methods . 1

1.2 Overview of the Thesis . 2

2 Background 4
2.1 Model . 4

2.2 Problem Statement . 5

3 Related Work 8
3.1 Iterative Filtering Algorithms . 8

3.2 Enhanced Iterative Filtering Algorithm . 9

3.3 Statistical Estimation . 10

3.4 Outlier Detection Algorithms . 11

4 An Algorithm for LOF and Its Application 13
4.1 Steps for Calculations of LOF . 13

4.2 Selecting k for Computing LOF in the Presence of Collusion Attack 18

5 Proposed Two Phase Data Aggregation Algorithms 20
5.1 Detection of Outliers . 21

5.1.1 Detection of Outliers in a Single Step 21

5.1.2 Detection of Outliers Iteratively 22

5.1.3 Detection of Outliers using Row-Wise Votes 25

5.1.4 Detection of Outliers using K-means Clustering 26

5.2 Combinations of Algorithms . 30

5.2.1 Detection of Outliers and Iterative Filtering 30

5.2.2 Detection of Outliers and RDAM 31

5.2.3 Algorithm Based on Combination of Weights and Votes 32

5.2.4 Detection of Outliers and Statistical Estimation 33

6 Estimation of LOF for Simple Datasets 34

7 Experimental Results 44
7.1 Experimental Settings . 44

7.2 Performance Evaluation Metric . 46

7.3 Results . 46

8 Conclusion 53

References 54

iii

www.manaraa.com

List of Figures

2.1 Sensor network topology. 4

2.2 Sensor network threats and solutions. 7

4.1 Outlier Detection algorithm. 13

4.2 Four data points used to illustrate calculations in the algorithm that follows. 14

4.3 Local Outlier Factor method Conception. 19

4.4 Local Outlier Factor with optimal k. 19

5.1 Two phases of our algorithms. 20

6.1 Collusion Attack Model. 34

7.1 RMSE with original conditions of collusion attack 47

7.2 RMSE with changed conditions of collusion attack with 3 colluders 49

7.3 RMSE with changed conditions of collusion attack with 5 colluders 49

7.4 RMSE with changed conditions of collusion attack with 7 colluders 50

7.5 RMSE with changed conditions of collusion attack with 8 colluders 50

7.6 RMSE reduction with changed conditions of collusion attack with 8 col-

luders comparing to RDAM . 51

7.7 The maximum error with changed conditions of collusion attack 52

iv

www.manaraa.com

List of Tables

3.1 Data Model . 8

3.2 Iterative Filtering Algorithm converges to colluded readings from s8 sensor. 9

3.3 RDAM avoids converging to colluded readings from s8 sensor. 10

5.1 Notations. 20

5.2 Data points and corresponding LOF values 21

5.3 Votes table . 26

5.4 k-means clustering: splitting into clusters 28

5.5 k-means clustering: checking . 29

5.6 Data points and corresponding LOF values with optimal k 29

5.7 Detection of Outliers in a Single Step and IF (LOF-single-IF) 31

5.8 Detection of Outliers in a Single Step and RDAM (LOF-single-RDAM) . . 31

5.9 Detection of Outliers in a Single Step and Statistical estimation 33

v

www.manaraa.com

Chapter 1

Introduction

The present level of processes automation requires extensive use of various sensors. Due

to unreliability of sensors they are deployed redundantly. Data from multiple sensor nodes

is accumulated and combined by an aggregator node. An aggregator node not only collects

readings from sensors, but also minimizes or eliminates the influence of readings from

faulty or compromised sensors. Secure data aggregation algorithms for sensor networks

aim to provide mechanisms for eliminating or resisting data distortion. These algorithms

are usually run on an aggregator node or a base station.

1.1 Data Aggregation Methods

Probably the earliest and easiest method of data aggregation is simple averaging of readings

from all sensors. However, simple averaging method has some major drawbacks, because it

does not consider the existence of bias errors or faulty sensors and not to mention malicious

attacks. Only one faulty sensor may reduce the accuracy of aggregated result significantly.

In addition, the method does not doubt any sensor’s reading. This makes the method highly

vulnerable even to a simple attack, where the attacker skews reading of one or more sensors

to a certain degree to alter estimated reading.

Iterative Filtering (IF) algorithms offer refined approaches (see [8] and [18] for exam-

ples). They initially assign one weight to the reading of each sensor and then weights

are recalculated at each iteration based on the distance of the readings from the estimated

value obtained in the previous iteration. They reduce the effect of a simple attack. But the

weakest point of these iterative filtering algorithms is the use of a predetermined procedure

for assigning an initial weight to each sensor’s reading.

An iterative algorithm is vulnerable to a malicious attacker who has knowledge of all

readings and has power to alter two or more readings [18]. A malicious attacker can force

the iterative filtering algorithm to converge to a desired value by altering readings of the

compromised sensors (for details of an example situation see [18]).

1

www.manaraa.com

2

To overcome weakness of the iterative filtering algorithm in [8], a Robust Data Ag-

gregation Method (RDAM) was proposed in [18]. The main idea of the algorithm is to

estimate a set of non-equal initial weights for the readings. The objective of the method is

to calculate smaller initial weights for the readings of the compromised sensors. Results of

extensive empirical evaluation of the RDAM method against other methods demonstrated

highest accuracy for both simple and collusion attacks (for details see [18]).

However, any estimation of mean and standard deviation is extremely sensitive to

presence of outliers [1],[14]. Thus, any aggregation algorithm that estimates true values

from sensor-readings before removing outliers is susceptible to errors. In this work, we

propose and evaluate a set of two phase data aggregation algorithms. In the first phase the

outliers are identified and then, in the second phase an estimate is calculated.

1.2 Overview of the Thesis

In this work, we consider variations of the collusion attack. Our extensive evaluations

discovered that in certain conditions the RDAM cannot overcome the influence of malicious

attacker. In this work several two phase algorithms are proposed and evaluated.

The first phase of the proposed method employs a variant of Local Outlier Factor (LOF)

calculation method [6] to estimate the degree that an object is an outlier because of collusion

attack, sensor fault, noise, or a combination of them. This gives a flexible instrument to

exclude suspected sensor-readings before estimation of a true value. Note that this method,

unlike methods described previously, removes sensor-readings from compromised or bad

sensors, which improve estimated values, while decrease the amount of calculations in the

second phase of the proposed method. We present a set of different methods, including

IF and RDAM, after LOF method. Also we test some variations of the algorithms in

cooperation with k-means clustering method [9]. Finally, we introduce two LOF-based non-

iterative algorithms that we found most accurate almost in all considered attacks. Moreover,

the methods work without IF portion, that excludes disadvantages and vulnerabilities related

to it.

www.manaraa.com

3

The rest of thesis is organized as follows. Chapter 2 describes the problem statement.

Here we briefly present most widely used topology of sensor networks and review their

potential vulnerabilities. Chapter 3 briefly reviews work related to studies here. We

describe existing data aggregation as well as outlier detection methods. Chapter 4 presents

basic definitions and steps for computation of LOF. Chapter 5 presents our novel algorithms.

We describe different combinations of using LOF method that we apply in our algorithms.

Chapter 6 presents some theoretical results for computing LOF values when part of the data

is from collusion attack. Chapter 7 shows our experimental results. Finally, the conclusion

is provided in Chapter 8.

www.manaraa.com

Chapter 2

Background

2.1 Model

The sensor network topology used for our work is an abstract model proposed in [20]

(see Figure 2.1). A sensor network is built of a base station and a set of sensor clusters.

Each cluster has a cluster head that gathers data from all sensor-nodes connected to it. A

cluster head is also known as an aggregator node, because it gathers readings from multiple

sensor nodes. The main functions of an aggregator node are collecting data from its sensor

nodes, aggregating the raw data to produce an estimated reading, and communicating the

processed data to the base station. Each sensor node has a micro-controller with one

or multiple sensors. The micro-controller is equipped with relatively small memory and

computing power, while an aggregator has bigger memory and higher computing power.

A base station has larger memory and computing power, in addition to communication

capabilities.

Figure 2.1: Sensor network topology.

4

www.manaraa.com

5

2.2 Problem Statement

Sensor networks often operate in unattended environments and are deployed distributively,

which makes them highly susceptible to failure and physical attacks. This creates threats to

sensor networks security. Although in general, security can be defined as the combination

of availability, confidentiality, and integrity, in our work we focus only on integrity. In

addition, it is assumed that the aggregator nodes and the base station are not compromised.

Assuming these limitations, we identify possible threats to the sensor network and propose

solutions to overcome them (see Figure 2.2).

Classification of threats to sensor networks and their solutions

Nowadays, inexpensive sensors are embedded in numerous devices. These inexpensive

senors are not only unreliable, but they are also susceptible to failure. Moreover, they are

usually insecure and their outputs are easily manipulated by malicious attackers.

Any sensor reading further from true value can be considered as an outlier, and in the

literature they are categorized into several classes (see [13],[19], and [17]).

1. Noise: data with greater variance.

2. Spike: data with one or more out-of-bound readings.

3. Stuck-at: data with quasi-zero variance.

Consequently we cannot depend on readings from a single sensor. However, low cost of

sensors allows one to compensate for their unreliability through use of multiple sensors.

For example, after one receives readings from multiple sensors and apply a filtering tech-

nique, e.g. Iterative Filtering, the contributions of reading from unreliable sensors are

reduced. Furthermore, this approach minimizes errors because of simple attacks mentioned

in Chapter 1.

However, this technique cannot overcome a malicious attack, if and when the attacker

has knowledge of all readings, details about filtering technique, and capability to alter some

www.manaraa.com

6

of the readings. An example of a malicious attack is described in [18], where a collusion

attack forces the Iterative filtering algorithm to converge to a skewed value. Rezvani et al.

in [18] proposed an algorithm to improve Iterative Filtering and it is capable of reducing

impacts of colluded readings. However, in our experiments we found conditions under

which algorithms for reducing influence of colluded readings, such as RDAM method, are

not effective. As a solution for such types of attacks we propose a set of variations of outlier

detection algorithms that identify and, note, completely remove the impact of compromised

readings. Considering that a micro-controller is very limited in its performance we set a

criteria for the algorithms that they do not require high computational efforts.

www.manaraa.com

7

Figure 2.2: Sensor network threats and solutions.

www.manaraa.com

Chapter 3

Related Work

The extensive use of cheap and unreliable sensors mandates development of new algorithms

for aggregating data securely, because these sensors are not only unreliable, but they are

also easily compromised by malicious attackers. Also, it is necessary to take into account

that new types of attacks continue to emerge with time. Thus, a robust algorithm that is

resistant to known attacks, also should be resistant to emerging attacks. There are a number

of research approaches and works related to our topic.

In our examples and experiments we consider a data model depicted in Table 3.1, where

n - is total number of sensors, m - is number of readings from each sensor, x (t)
s - data from

sensor s at time t.

Table 3.1: Data Model

Sensor readings

instant s = 1 s = 2 ... s = n
t = 1 x (1)

1
x (1)

2
... x (1)

n

t = 2 x (2)
1

x (2)
2

... x (2)
n

...

t = m x (m)
1

x (m)
2

... x (m)
n

3.1 Iterative Filtering Algorithms

Certainly the most studied method related to our research is Iterative Filtering Algo-

rithms [16],[23],[26],[8],[15],[2]. In general, the majority of the work was dedicated for

rating networks, where users give ratings to objects. Mizzaro proposed an algorithm for the

assessment of scholarly papers [16]. Yu et al. [23] and, more recently, Zhou et al. [26] pre-

sented iterative algorithms for rating networks. However, these reputation-based algorithms

may not always converge. Subsequently, a number of studies have proposed novel methods

to overcome the convergence issue. C. de Kerchove and P. Van Dooren introduced a conver-

gent Iterative Filtering algorithm using three discriminant functions: inverse, exponential,

and Affine [8]. Li et al. in [15] presented six iterative algorithms, where users reputation is

8

www.manaraa.com

9

calculated using the aggregated difference between the users rating and the corresponding

objects ranking. Ayday et al. developed an iterative algorithm with probabilistic and belief

propagation-based approach (see details in [2]). However, a fundamental problem of all

IF algorithms is that they are primarily aimed against simple cheaters and do not consider

severe malicious attacks such as a collusion attack that we mentioned in Chapter 1. Let us

consider an example to illustrate this issue.

Example 1. Let us consider a dataset X with m = 3 readings from each of the n = 8

sensors. Sensors s1 - s5 are providing their true readings to the aggregator, while s6 - s8

are under the influence of a malicious attacker and providing manipulated readings. The

reading from s8 at time t is equal to the average of all readings of all sensors. Table 3.2

shows how the algorithm converges quickly to the average readings from s8. This happens

because the algorithm assigns equal initial weights for each sensor at the first round.

Table 3.2: Iterative Filtering Algorithm converges to colluded readings from s8 sensor.

Sensor readings aggregate values

instant s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

t = 1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 11.6157
t = 2 10.75 9.63 9.73 10.21 10.43 15.75 15.93 11.7757
t = 3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 11.8486
round Sensor weights t=1 t=2 t=3

1 1 1 1 1 1 1 1 1 11.6157 11.7757 11.8486

2 0.9786 0.2258 0.2652 0.4417 0.7246 0.0631 0.0712 3.2000E+09 11.6157 11.7757 11.8486

3 0.9786 0.2258 0.2652 0.4417 0.7246 0.0631 0.0712 1.1625E+18 11.6157 11.7757 11.8486

3.2 Enhanced Iterative Filtering Algorithm

To reduce effect of collusion attack, Rezvani et al. proposed a Robust Data Aggregation

Method (RDAM), which is an improvement to IF method. In this method, unequal initial

weights are calculated using the readings available to the aggregator [18]. This enhancement

not only makes an IF algorithm collusion attack resistant, but it also reduces the number of

required iterations to converge to an estimated value. The method is based on the assumption

that the distribution of stochastic components of sensor errors is known or can be estimated.

www.manaraa.com

10

Example (Cont.). With the same data the algorithm reduces the impact of readings from

s6 - s8 (see Table 3.3). The algorithm estimates unequal initial weights for the readings at

the first round. This allows to avoid converging to the values of s8. Although the algorithm

in the example converges to the values of s4, in real data the algorithm usually converges

to unique values, which actually occurred in our extensive simulations.

Table 3.3: RDAM avoids converging to colluded readings from s8 sensor.

Sensor readings aggregate values

instant s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

t = 1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 11.6157

t = 2 10.75 9.63 9.73 10.21 10.43 15.75 15.93 11.7757

t = 3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 11.8486

round Sensor weights t=1 t=2 t=3

1 0.0722 0.3551 0.0707 0.4689 0.0055 0.0072 0.0011 0.0193 10.0699 10.0865 10.1772

2 2.5168 4.5607 10.5808 57.2282 3.9345 0.0317 0.0345 0.3734 10.1473 10.1527 10.2842

3 3.3182 3.2789 6.6131 408.4660 5.6548 0.0326 0.0356 0.4145 10.1980 10.2076 10.3222

4 3.9912 2.7799 5.2341 2.07E+05 6.9363 0.0332 0.0363 0.4413 10.2000 10.2100 10.3200

5 4.0060 2.7741 5.2145 1.38E+10 6.9255 0.0332 0.0363 0.4417 10.2000 10.2100 10.3200

3.3 Statistical Estimation

If the readings from the sensors have no outliers, a statistical method for estimating true

values is described here. The main assumption for the method is that every sensor has a

certain error in its readings, because no sensor gives accurate readings continuously. This

suggests to find a method for estimation of a true value in such a way that all the readings

are considered, but weights vary based on temporal variation pattern of the readings. The

sensor that has least variance is considered to have provided better readings. We propose to

use the variance of readings of a sensor to determine a weight that is applied to the readings

of the sensor when a true value is estimated from readings of all the sensors. A top-down

description of the method starts from Equation (3.1).

ws =

1
υs∑n

i=1
1
υi

, (3.1)

where υs is defined as

υs =
1

m − 1
·

m∑
t=1

(μs − x (t)
s)2, (3.2)

www.manaraa.com

11

and μs is the mean of all readings from sensor s

μs =
1

m
·

m∑
t=1

x (t)
s (3.3)

After the weights are calculated, estimates of the true values are obtained using the

equation below.

r (t) =

n∑
s=1

ws · x (t)
s (3.4)

This method should be used only if the sensor readings are free of outliers or outliers

have been identified and removed from the readings. Next we describe algorithms useful

for outlier detection.

3.4 Outlier Detection Algorithms

Detection of outliers in a dataset is a well studied subject. But the information age, especially

big-data and Internet of Everything (IoE), has seen renewed interest in the subject to fit the

current needs. In our study, we use a recently proposed method and it is described in

Chapter 4. In this section we provide a brief overview of the existing outlier detection

method.

In general, outlier detection methods form five main classes: statistical, nearest neighbor,

clustering, classification, and spectral decomposition [25]. In statistical methods outliers

are defined as objects that do not fit in assumed distribution [3],[24],[22]. Nearest neighbor

methods use a distance as a mean to distinguish outliers [5],[6].

Clustering algorithms use similarity metrics [12]. Most popular and probably old clus-

tering algorithm is k-means [9], which we also apply in our experiments. Classification

methods use training phase when they create mathematical models for regular data and

outliers. After that they classify new data using these models [21],[11]. Spectral decompo-

sition methods use principal component analysis to create a model structure. Readings that

do not fit the structure are considered as outliers [7].

www.manaraa.com

12

The methods in last three groups are characterized as requiring high computational

efforts. However, sensor micro-controllers are limited in their performance. This motivates

us to use in our algorithm a method that demands for relatively low computing power.

There is the Local Outlier Factor algorithm among Nearest neighbor methods group

proposed by Breunig M. et al. for finding anomalous objects by measuring the local deviation

of a given object with respect to its neighbors [6]. The method is able to detect outliers

even if they form a dense cluster together regardless the data distribution. The method has a

complexity O(n2), where n is the number of data objects and is considered not a good choice

for devices with limited computing power. However, our theoretical analysis in Chapter 6

shows that original equations described in Chapter 4 can be significantly simplified and

adapted for the type of attacks considered here.

www.manaraa.com

Chapter 4

An Algorithm for LOF and Its Application

4.1 Steps for Calculations of LOF

In this section we present basic definitions and steps for computation of local outlier

factor (LOF) presented in [6]. The idea of LOF is based on the concept of local density.

Computation of LOF involves six steps (see Figure 4.1). Since each step is essential for

obtaining a final value of each data object and we will use these definitions for developing

some novel computation algorithms for special cases, we formally define computation of

each step. First we present an informal definition from [10].

Figure 4.1: Outlier Detection algorithm.

Definition 1. (Informal definition [10]:) An outlier is an observation that deviates so

much from other observations as to arouse suspicions that it was generated by a different

mechanism.

�

13

www.manaraa.com

14

For ease of communication, we use symbols o, p, and q to denote objects in a dataset X .

The notation d(p, q) is used to represent distance between two objects p and q. A formal

definition for d(p, q) is provided next.

Definition 2. (Distance d(p, q):) Distance between two points p and q, denoted as d(p, q),

is a nonnegative number, such that (i) d(p, p) = 0, (ii) d(p, q) > 0, if p � q, and (iii) for

three distinct points o, p, and q if d(o, p) = x and d(p, q) = y, then d(o, q) ≤ (x + y).

�

Above definition encompasses many methods for measuring the distance between two

points, including Euclidean distance. For ease of conveying concepts, most of the definitions

are accompanied by a running example.

Example 2. Let us consider four data points a(0), b(1), c(2), and d(5). The number in

the parenthesis represents the position on the x-axis. These points are shown in Figure 4.2.

We use Euclidean distance between points and the values of distance for all distinct pair of

points are shown as following.

Figure 4.2: Four data points used to illustrate calculations in the algorithm that follows.

d(a, b) = 1; d(a, c) = 2; d(a, d) = 5; d(b, c) = 1; d(b, d) = 4; d(c, d) = 3.

�

In the next step, the outlier-detection algorithm calculates dk (p). It should be noted that

dk (p) is neither distance of the furthest point nor the number of points in the neighborhood

of the point p. It is true that the neighborhood of p will have at least k points, but the actual

number may be much more than k.

www.manaraa.com

15

Definition 3. (k-distance dk (p) [6]) For any positive integer k, the k-distance of object p,

denoted as dk (p), is defined as the distance d(p, o) between p and an object o ∈ X such

that:

(i) for at least k objects q ∈ X \ {p} it holds that d(p, q) ≤ d(p, o), and

(ii) for at most (k − 1) objects q ∈ X \ {p} it holds that d(p, q) < d(p, o).

�

In our example, d2(.) of all the points are 2, but this is not true in general.

Example (Cont.). We consider four data points a(0), b(1), c(2), and d(5) from Exam-

ple 4.2. We use k = 2 for this example.

d2(a) = d(a, c) = 2; (c is the second nearest neighbor);

d2(b) = d(b, a) = 1; (a/c is the second nearest neighbor);

d2(c) = d(c, a) = 2; (a is the second nearest neighbor);

d2(d) = d(d, b) = 4; (b is the second nearest neighbor);

�

After dk (·), the k-distance, calculation of all the points, the next step is to compute

Nk (·). Intuitively, Nk (p) is the set of all points in the neighborhood of p whose distance is

less than or equal to dk (p). Formally, Nk (p) is defined as

Definition 4. (k-distance neighbors Nk (p) [6]) Given the k-distance dk (p) of p, k-distance

neighbors of an object p are the objects whose distance from p is not greater than the

k-distance of p, that is, Nk (p) = {q ∈ X \ {p} | d(p, q) ≤ dk (p)}.

�

Example (Cont.). We continue to use the same four points in Figure 4.2. Below are

2-distance neighbors of all four points.

N2(a) = {b, c}; N2(b) = {a, c}; N2(c) = {a, b}; N2(d) = {b, c}

www.manaraa.com

16

Reachability Distance of an object p with respect to another object o, denoted as

Rdk (p← o), is defined next. The definition is followed by computation of Rd2(b← a) for

points b and a in our example. It is important to note that we have extended the scope of

the definition in [6]. Since readings from all sensors could be identical in some cases, the

k-distance could be zero in those cases. Our definition takes care of those special cases.

Definition 5. (Reachability Distance Rdk (p ← o)) The Reachability Distance of object p

with respect to another object o is defined as

Rdk (p← o) = max{dk (o), d(p, o), ε }, (4.1)

where ε is a small constant that is introduced to avoid division by zero operation in further

calculations.

�

For the objects b and a in the Example 2, Rd2(b← a) = max{d2(a), d(a, b), ε }
= max{2, 1, ε } = 2. As will be clear later, computation of Rdk (p← o) for all pairs of points

in X may not be necessary.

For an object p ∈ X , the values of Rdk (o) ∈ Nk (p) and cardinality of Nk (p) are used to

compute Local Reachability Density, lrdk (p).

Definition 6. (Local Reachability Density lrdk (p) [6]) The local reachability density of an

object p is defined as

lrdk (p) =
|Nk (p) |∑

q∈Nk (p) Rdk (q ← p)
, (4.2)

where |Nk (p) | is the number of objects in Nk (p).

�

Example (Cont.). Now we illustrate computation of lrd2(a).

lrd2(a) =
|Nk (a) |∑

q∈Nk (a) Rdk (q ← a)
=

|N2(a) |
Rd2(b← a) + Rd2(c ← a)

www.manaraa.com

17

Now,
Rd2(b← a) = max{d2(a), d(a, b), ε }

= max{2, 1, ε } = 2,

and
Rd2(c ← a) = max{d2(a), d(a, c), ε }

= max{2, 2, ε } = 2

Thus, lrd2(a) = 2
2+2
= 0.5

Following similar steps, we obtain values of lrd2(b), lrd2(c), and lrd2(d):

lrd2(b) =
|N2(b) |

Rd2(a ← b) + Rd2(c ← b)
=

2

1 + 1
= 1;

lrd2(c) =
|N2(c) |

Rd2(a ← c) + Rd2(b← c)
=

2

2 + 2
= 0.5;

lrd2(d) =
|N2(d) |

Rd2(b← d) + Rd2(c ← d)
=

2

4 + 4
= 0.25;

�

The final step in the algorithm is to compute Local Outlier Factor, LOFk (p) of all the

objects p ∈ X . For defining LOFk (p) of an object p ∈ X , value of lrdk (p), values of

lrdk (q) ∈ Nk (p), and cardinality of Nk (p) are used, but the expression can be simplified

as shown below.

Definition 7. (Local Outlier Factor LOFk (p) [6]) The local outlier factor of p is defined as

LOFk (p) =

∑
q∈Nk (p)

lrdk (q)
lrdk (p)

|Nk (p) | =

(∑
q∈Nk (p) lrdk (q)
|Nk (p) | ∗ lrdk (p)

)
. (4.3)

�

www.manaraa.com

18

Example (Cont.). We complete the example after calculating LOF2(.) of all objects in the

example.

LOF2(a) =
lrd2(b) + lrd2(c)
|Nk (a) | ∗ lrd2(a)

=
1 + 0.5

2 ∗ 0.5
= 1.5;

LOF2(b) =
lrd2(a) + lrd2(c)
|Nk (b) | ∗ lrd2(b)

=
0.5 + 0.5

2 ∗ 1
= 0.5;

LOF2(c) =
lrd2(a) + lrd2(b)
|Nk (c) | ∗ lrd2(c)

=
0.5 + 1

2 ∗ 0.5
= 1.5;

LOF2(d) =
lrd2(b) + lrd2(c)
|Nk (d) | ∗ lrd2(d)

=
1 + 0.5

2 ∗ 0.25
= 3;

After sorting these local outlier factors we obtain,

LOF2(d) = 3; LOF2(a) = 1.5; LOF2(c) = 1.5; LOF2(b) = 0.5

Obviously, top first outlier in this example is the object d.

4.2 Selecting k for Computing LOF in the Presence of Collusion Attack

Weaknesses of the Local Outlier Factor method are complexity O(n2) and selecting the

right k is not obvious. According to [6] the optimal value of k is defined as k = (ng − 1),

where ng is the number of reliable objects. For our case the simplest way to select k is based

on the assumption: there are considerably more ‘normal’ observations than ‘abnormal’

observations (outliers/anomalies) in the data. That hypothesis is enough to set

k = �n/2� (4.4)

to get decent results, where n is total number of observations.

Assume we have 10 data points, 3 of which are colluded (see Figure 4.3).

By calculating Local Outlier Factors (4.3) based on the average distance from every

point p to the nearest k = �n/2� = 5 points q we get that Local Outlier Factors of colluded

data points are significantly higher, that gives a mathematical instrument to exclude them

from further calculations. However, the simplicity has a drawback. Non-adaptive k leads

to the same number of calculations for different number of colluders, which in some cases

can make the value of LOF for outlier not so clearly prominent from reliable objects.

www.manaraa.com

19

Figure 4.3: Local Outlier Factor method Conception.

There is a better way to determine the optimal k that uses k-means1 clustering method.

The method splits all objects into a given number of clusters in which each object belongs

to the cluster with the nearest mean, serving as a prototype of the cluster. Assuming that

objects form two clusters: reliable ng and colluded nb objects, k-means clustering method

allows to find the optimal k defined in (4.5).

k = ng − 1 (4.5)

Using this method allows us to consider the optimal k in calculations (see Figure 4.4 and

Section 5.1.4). In this case values of LOF for outliers reach the maximum, which makes

them clearly distinguishable from reliable objects.

Figure 4.4: Local Outlier Factor with optimal k.

1In this context symbol k is a part of the name of the method and it is not related to the k-distance definition.

www.manaraa.com

Chapter 5

Proposed Two Phase Data Aggregation Algorithms

In this chapter we present our algorithms. Logically and functionally our algorithms consist

of two phases: 1) Detection and removal of outliers, 2) True value estimation with remaining

data (see Figure 5.1). Table 5.1 contains notations used in descriptions for the algorithms.

Figure 5.1: Two phases of our algorithms.

Table 5.1: Notations.

r (t) true value of the signal at time t
r (t) estimated value of the signal at time t
e(t)

s noise (error) of sensor s at time t
S a vector including numbers of all sensors

S′ a vector including numbers of reliable sensors

X an array of source data

X ′ an array of reliable data

n number of sensors

m number of readings from each sensor

c number of compromised sensors

x (t)
s data from sensor s at time t

ws weight that reflects the trustworthiness of a sensor s
X a vector of average readings from each sensor

xs an average reading from sensor s
X
′

a vector of average readings from reliable sensors

LOFk (X) an average of all LOFk (xs)
LOFk (X) an average of all LOFk (xs)

20

www.manaraa.com

21

5.1 Detection of Outliers

Following the logic of the construction of our algorithms, in this section we describe

methods that we apply in the first phase of our algorithms. This phase is dedicated to the

detection of outliers.

5.1.1 Detection of Outliers in a Single Step

As the name suggests the proposed algorithm detects outliers (that is, colluded data) and

excludes them from further calculations in a single step. In Chapter 4 we described how to

obtain a sequence of LOFk (x1), LOFk (x2), ..., LOFk (xn) for a vector X = x1, x2, ..., xn. As

discussed earlier, higher the value of LOF of an object, higher the probability of the object

being a colluded object. The main challenge here is to set a criteria to split the sequence of

LOF values so that only colluded objects are excluded.

Example 3. For the data points depicted on the Figures 4.3 and 4.4, for k = 5 corresponding

LOF parameters are shown in the Table 5.2.

Table 5.2: Data points and corresponding LOF values

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

value of xs 1.5 2 3 4 5 6 6.5 15 17 18

LOF5(xs) 1.41 1.23 0.87 0.67 0.87 1.23 1.41 1.93 2.36 2.57

LOF5(X) 1.456

LOF5(xs) < LOF5(X) true true true true true true true false false false

Our empirical observations suggest that LOFk of an outlier is above LOFk , which is

defined as the average of all LOFk values:

LOFk (X) =
∑n

s=1
LOFk (xs)

n
(5.1)

Example (Cont.). So, for the dataset in Table 5.2 LOF5(X) = (1.41+1.23+0.87+0.67+

0.87 + 1.23 + 1.41 + 1.93 + 2.36 + 2.57)/10 = 1.456

www.manaraa.com

22

Thus, data points x8(15), x9(17), and x10(18), whose LOF values are greater than

LOF5, are identified as outliers, and in reality are.

�

Using the notations introduced in Table 3.1, the Algorithm 1 provides a pseudo code

description of the Outliers Detection in a Single Step.

Algorithm 1: Outliers Detection in a Single Step Algorithm

Input : X[m, n]

Output: S′
1 Compute k = �n/2�
2 Compute xs =

∑m
t=1

x (t)
s

m for each sensor 1 ≤ s ≤ n
3 Compute LOFk (xs) for each sensor 1 ≤ s ≤ n

4 Compute LOFk (X) =
∑n

s=1
LOFk (xs)

n
5 for s = 1 : n do
6 if LOF (xs) < LOFk (X) then
7 S′ = S′ + {s};
8 end
9 end

On the input we have a dataset X with m observations for each of n sensors. Output

of the algorithm is a vector S′ that consists of indices of sensors that are found reliable.

First, the algorithm calculates k = �n/2�. Then the algorithm computes an average of all

m readings for each sensor xs, xs. This is repeated for all n sensors. Now we have a vector

X[n] of n data points. Third, compute LOFk (xs) for each element of X . Next, calculate

the average LOFk (X) of all LOFk (xs). Then, compare each LOFk (xs) value with the

LOFk (X). Those sensors whose LOFk (xs) values are below the average are considered as

reliable.

5.1.2 Detection of Outliers Iteratively

A variation of the previous method is the method in which outliers are found iteratively.

Unlike the previous method, only one outlier with the maximum LOF value is removed in

every cycle.

www.manaraa.com

23

Values of LOF parameter are recalculated considering the remaining data points after

every iteration. A threshold and a ratio of the maximum LOF value to the minimum (see

Equation (5.2)) are used for finding a loop exit-condition.

ratio =
max(LOFk (X))
min(LOFk (X))

(5.2)

According to the [10] those elements that are deep inside a cluster have LOF values

close to 1. On the other hand, all outliers have LOF values significantly greater than 1.

This gives a basis to expect that if the ratio exceeds a certain threshold, then xs is an

outlier, where LOFk (xs) = max(LOFk (X)). Initially we set a threshold equal 2. Our

empirical observations and educated guess show that a value of 2 is good enough to detect

obvious outliers. However, keeping the same threshold for all iterations often leads to false

exclusion of reliable data. On the other hand, if we initially set the threshold too high it

causes accepting outliers as a reliable data. Again, our extensive empirical evaluations has

shown that if we increase the threshold every iteration using Equation (5.3) performance of

the algorithm is excellent.

thresholdi+1 =
size(X)

size(X) − 1
∗ thresholdi, (5.3)

where i is the current iteration number.

The Equation 5.3 changes the threshold value slowly, if the size of the set X large, but

the threshold is increased faster if the size of X smaller. Thus, as we near the elimination

of outliers, loop exit-condition is also close to be satisfied.

www.manaraa.com

24

Example 4. For the example considered in Section 5.1.1 four iterations are needed.

Initialization:

threshold = 2;

X = {1.5, 2, 3, 4, 5, 6, 6.5, 15, 17, 18}

k = �size(X)/2� = 5

Iteration 1:

LOF5(X) = {1.41, 1.23, 0.87, 0.67, 0.87, 1.23, 1.41, 1.93, 2.36, 2.57}
ratio = 2.57

0.67
= 3.8

(ratio > threshold) =⇒ X = X − {x10} = {1.5, 2, 3, 4, 5, 6, 6.5, 15, 17}
threshold = 9

8
∗ 2 = 2.25

Iteration 2:

LOF5(X) = {1.41, 1.23, 0.87, 0.67, 0.87, 1.23, 1.41, 2.82, 3.37}
ratio = 3.37

0.67
= 5

(ratio > threshold) =⇒ X = X − {x9} = {1.5, 2, 3, 4, 5, 6, 6.5, 15}
threshold = 8

7
∗ 2.25 = 2.57

Iteration 3:

LOF5(X) = {1.41, 1.23, 0.87, 0.67, 0.87, 1.23, 1.41, 3.69}
ratio = 3.69

0.67
= 5.5

(ratio > threshold) =⇒ X = X − {x8} = {1.5, 2, 3, 4, 5, 6, 6.5}
threshold = 7

6
∗ 2.57 = 3

Iteration 4:

LOF5(X) = {1.41, 1.23, 0.87, 0.67, 0.87, 1.23, 1.41}
ratio = 1.41

0.67
= 2.1

(ratio < threshold) =⇒ X ′ = X

Initially we set a threshold and calculate k, which we keep the same throughout whole

the algorithm.

www.manaraa.com

25

In first iteration we calculate values of LOF5 for each element of X . Then, find the ratio

of the maximum value of LOF, which is LOF5(x10), to the minimum - LOF5(x4). Next, we

find that the value of the ratio is greater than threshold, which means that x10 is an outlier.

Exclude x10 from the set X , recalculate a new value of threshold and continue iterations.

In every iteration we recalculate values of LOF5 for remaining elements of the X set,

find new values of the ratio and threshold until the exit-condition is satisfied.

After completing the last iteration on the input set X , the elements in the set X ′ are

considered to be good data points.

�

Using the notations introduced in Table 3.1, the Algorithm 2 provides a pseudo code

description of the Detection of Outliers Iteratively.

Algorithm 2: Outliers Detection Iteratively

Input : X[m, n], threshold
Output: X ′

1 Compute xs =
∑m

t=1
x (t)
s

m for each sensor 1 ≤ s ≤ n
2 Compute k = �n/2�
3 do
4 Compute LOFk (xs) for each sensor 1 ≤ s ≤ n

5 Compute ratio = max(LOFk (X))
min(LOFk (X))

6 if ratio > threshold then
7 X = X − xs | LOFk (xs) = max(LOFk (X))
8 n = n − 1

9 end
10 threshold = size(X)

size(X)−1
∗ threshold

11 while ratio > threshold;

12 X ′ = X

Note that the example 4 excludes computation of average values for each sensor.

5.1.3 Detection of Outliers using Row-Wise Votes

Two outlier detection algorithms presented in previous sections, compute an average of

all readings from a sensor. Then outlier detection algorithm identify outliers from these

www.manaraa.com

26

averages. The Algorithm 3 presented in this section identifies outliers from the n readings

that are reported at each time instance t. In other words, the Algorithm 3 processes raw

data in a row-wise manner. The outlier detection algorithm in Section 5.1.1 is applied to

each row of X for identification outliers, that is, LOFk (x (t)
s) values are calculated for every

observation x (t)
s of sensor s. The average LOF (x (t)) value is calculated for every vector of

observation x (t). For those x (t)
s whose LOF values indicate them as reliable corresponding

elements of votes[m, n] array are assigned 1, otherwise it is assigned 0. This gives a table

of votes (see example in the Table 5.3) with average values of all votes for each sensor,

which is referred to reliability. Sensors that have reliability greater than a certain threshold

are considered as reliable. After completing the algorithm the vector S′ contains numbers

of sensors that are found reliable.

Table 5.3: Votes table

Sensors

instant s1 s2 s3 s4 s5

t = 1 1 0 1 1 1

t = 2 1 0 1 1 0

t = 3 1 0 1 0 0

t = 4 1 1 1 1 1

t = 5 1 0 1 1 1

reliability 1 0.2 1 0.8 0.6

The advantage of this method is that it allows to set a threshold for excluding outliers; A

higher threshold will eliminate readings from a larger number of sensors, but the readings

from remaining sensors is expected to be highly reliable. The data shown in the Table 5.3

identify s1, s3, s4, s5 as reliable, if threshold is set to 0.5. But for same data sensors s1, s3,

s4 are found to be reliable data, if the threshold is set to 0.8.

5.1.4 Detection of Outliers using K-means Clustering

The main challenge in using LOF based Outlier Detection algorithms is selection of an

optimal value of k. As will be shown in Chaper 7, using Equation (4.4) it is possible to

obtain good results, but it is not very good if the number of colluded sensors is much less

www.manaraa.com

27

Algorithm 3: Outliers Detection Row-Wise Algorithm

Input : X[m, n], threshold
Output: S′

1 for t = 1 : m do
2 Compute LOFk (x (t)

s) for current observation, where 1 ≤ s ≤ n

3 Compute LOFk (x (t)) =
∑n

s=1
LOFk (x (t)

s)
n

4 for s = 1 : n do
5 if LOFk (x (t)

s) < LOFk (x (t)) then
6 votes(t)

s = 1;

7 end
8 else
9 votes(t)

s = 0;

10 end
11 end
12 end
13 for s = 1 : n do
14 if

∑m
t=1

votes(t)
s

m > threshold then
15 S′ = S′ + {s};
16 end
17 end

than n/2 (see Figures 4.3 and 4.4). As we have already mentioned, the optimal value of k

is (ng − 1), where ng is the number of reliable objects.

For that task k-means clustering method has potential to produce better results [4]. The

clustering algorithm splits data points into a given number of disjoint sets or clusters in

which each data point belongs to one of the clusters. A data point closest to the mean value

of all the data in a cluster serves as the prototype of the cluster.

Example 5. Let us consider data points from previous examples a(1.5), b(2), c(3), d(4),

e(5), f (6), g(6.5), h(15), i(17), and j (18) (shown in Table 5.2). The number in the

parenthesis represents the value of an observation. First, we set the number of clusters k2,

which is in our case 2 (for reliable and colluded data objects).
2Since the symbol k is an inherent component of k-means method terminology, we do not use other

symbols. Symbol k is used to denote the number of clusters only in this context. Further, we again use symbol
k in the meaning related to k-distance.

www.manaraa.com

28

Then select two data objects furthest apart a(1.5) and j(18). Next, define the initial

cluster means (centroids): Mean1 and Mean2, which are initially equal to the values of

the single data objects in the clusters.

The remaining data objects are now examined one at a time and assigned to the cluster

whose centroid is closest to the data point. The cluster centroid of a cluster is recalculated

every time a new data object is added to it. After nine steps the data objects are partitioned

into two clusters (see Table 5.4).

Table 5.4: k-means clustering: splitting into clusters

Cluster1 Cluster2

step data objects mean1 data objects mean2

1 a(1.5) 1.5 j(18) 18

2 a(1.5), b(2) 1.75 j(18) 18

3 a(1.5), b(2), c(3) 2.17 j(18) 18

4 a(1.5), b(2), c(3), d(4) 2.63 j(18) 18

5 a(1.5), b(2), c(3), d(4), e(5) 3.1 j(18) 18

6 a(1.5), b(2), c(3), d(4), e(5), f(6) 3.6 j(18) 18

7 a(1.5), b(2), c(3), d(4), e(5), f(6), g(6.5) 4 j(18) 18

8 a(1.5), b(2), c(3), d(4), e(5), f(6), g(6.5) 4 h(15), j(18) 16.5

9 a(1.5), b(2), c(3), d(4), e(5), f(6), g(6.5) 4 h(15), i(17), j(18) 16.7

Next we verify that each data point has been allocated to the right cluster. To do that,

we compare each data point’s distance to its current cluster centroid and to its distance the

other cluster’s centroid. The procedure is illustrated in the Table 5.5.

The entries in the table confirms that the set of data points has been partitioned into two

clusters correctly. Otherwise, data points that do not pass verification test are relocated

to the other cluster and the centroids are recalculated. This iterative relocation continues

until no more data movements are required.

�

To guarantee that the algorithm stops its execution, it is necessary to provide additional

conditions.

www.manaraa.com

29

Table 5.5: k-means clustering: checking

data point
Distance to the

mean1(4)
Distance to the

mean2(16.7)
a(1.5) 2.5 15.2

b(2) 2 14.7

c(3) 1 13.7

d(4) 0 12.7

e(5) 1 11.7

f(6) 2 10.7

g(6.5) 2.5 10.2

h(15) 11 1.7

i(17) 13 0.3

j(18) 14 1.3

After partitioning the data into two clusters, we know the number of elements in each,

and assuming that reliable sensors are more than the colluded sensors, we can select the

optimal k using Equation (4.5), that is, k = (ng − 1), where ng is the number of elements

in the largest cluster.

An obvious question is why one would need to use LOF algorithm, since the data has

already been partitioned into two clusters. The answer is simple — k-means clustering

algorithm partitions any set of data into a given number of clusters irrespective of their

inherent property. But LOF values on a dataset give a measure for each data point that are

useful for verification of the partitioning process.

Example (Cont.). After determined that the size of the largest cluster {1.5, 2, 3, 4, 5, 6,

6.5} is 7 we set k = 7 − 1 = 6 and apply Detection of Outliers in a Single Step Algorithm

(see Table 5.6)

Table 5.6: Data points and corresponding LOF values with optimal k

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

value of xs 1.5 2 3 4 5 6 6.5 15 17 18

LOF6(xs) 1.35 1.2 0.89 0.59 0.89 1.2 1.35 2.3 2.75 2.98

LOF6(X) 1.55

LOF6(xs) < LOF6(X) true true true true true true true false false false

www.manaraa.com

30

After we applied Outlier Detection Algorithm in a Single Step we detected the same

outliers as in Table 5.2, but now the values of outliers’ LOF are greater than using k = 5,

which makes outliers to standout for detection.

�

5.2 Combinations of Algorithms

After the first phase of the algorithm is completed, readings suspected as outliers have been

removed. In the second phase of the algorithm a true value is estimated from the remaining

sensor-readings for each time instance. At this phase we can choose from IF, RDAM, and

statistical estimation method. There are 12 possible combinations of four outlier detection

algorithms described in Section 5.1, and three true value estimation algorithms in Chapter 3.

In the following section, we describe some of them.

5.2.1 Detection of Outliers and Iterative Filtering

A combination of four methods for detection of outliers presented in Section 5.1 with IF

gives four algorithms. Below is an example of combination of Detection of Outliers in a

Single Step with IF. We call this algorithm LOF-single-IF.

Example 6. We use the same data from the Example 1 of Chapter 3 for this example. We

have a dataset X with m = 3 observations from each of n = 8 sensors. Sensors s1 - s5

are giving reliable data, while s6 - s8 are reporting false data, where readings from s8

are equal to the average of all sensors. Table 5.7 illustrates results of LOF-single-IF. The

algorithm excludes the impact of skewed readings from s6 - s8. First phase: calculate

average readings xs for each sensor. Next, calculate LOFk for each average reading using

equation (4.4) k = �n/2� = 8/2 = 4. Then, compute LOF4(X) - average of all LOF4(xs).

After comparing each LOF4(xs) to LOF4(X) we detect that s6, s7, and s8 are outliers and

exclude them from further calculations. In the second phase we apply IF.

www.manaraa.com

31

Table 5.7: Detection of Outliers in a Single Step and IF (LOF-single-IF)

Sensor readings aggregate values

instant s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

t = 1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 11.6157

t = 2 10.75 9.63 9.73 10.21 10.43 15.75 15.93 11.7757

t = 3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 11.8486

1
p
h
as

e X 10.7400 9.6433 9.8067 10.2433 10.5833 15.7267 15.4833 11.7467

LOF4(X) 1.0865 1.3148 1.0816 0.6061 1.0912 3.5704 3.3897 2.3257

LOF4(X) 1.8083

LOF4(xs) < LOF4(X) true true true true true false false false

2
p
h
as

e

round Sensor weights t=1 t=2 t=3

1 1 1 1 1 1 - - - 10.1460 10.1500 10.3140

2 3.3993 3.1677 6.3423 457.8755 6.0378 - - - 10.1969 10.2064 10.3208

3 3.9715 2.7916 5.2642 1.3E+05 6.8935 - - - 10.2000 10.2100 10.3200

4 4.0059 2.7742 5.2146 1.4E+10 6.9254 - - - 10.2000 10.2100 10.3200

5.2.2 Detection of Outliers and RDAM

We created four combinations of methods of detection of outliers described in Section 5.1

with RDAM. Below is an example of combination showing Detection of Outliers in a Single

Step with RDAM. We call this algorithm LOF-single-RDAM.

Example 7. Combination of Detection of Outliers in a Single Step and RDAM similarly

detects and excludes outlier readings from sensors s6 - s8 using LOF technique at the first

phase. After removing skewed data, RDAM method is applied in the second phase. Table 5.8

shows how the algorithm excludes the impact of readings from s6 - s8.

Table 5.8: Detection of Outliers in a Single Step and RDAM (LOF-single-RDAM)

Sensor readings aggregate values

instant s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

t = 1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 11.6157

t = 2 10.75 9.63 9.73 10.21 10.43 15.75 15.93 11.7757

t = 3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 11.8486

1
p
h
as

e X 10.7400 9.6433 9.8067 10.2433 10.5833 15.7267 15.4833 11.7467

LOF4(X) 1.0865 1.3148 1.0816 0.6061 1.0912 3.5704 3.3897 2.3257

LOF4(X) 1.8083

LOF4(xs) < LOF4(X) true true true true true false false false

2
p
h
as

e

round Sensor weights t=1 t=2 t=3

1 0.0789 0.4362 0.081 0.3997 0.0041 - - - 9.9505 9.9616 10.0483

2 1.7568 8.4680 29.2168 15.1686 2.5746 - - - 9.9191 9.9054 10.0614

3 1.6380 9.6996 41.1109 1.2574E+01 2.4401 - - - 9.8740 9.8552 10.0168

4 1.4588 13.2041 83.6730 9.2561E+00 2.1298 - - - 9.8124 9.7856 9.9560

5 1.2570 22.0700 485.0123 6.4817E+00 1.7904 - - - 9.7731 9.7367 9.9206

6 1.1477 32.9083 5.50E+04 5.3023E+00 1.6143 - - - 9.7700 9.7300 9.9199

7 1.1388 33.9074 7.78E+08 5.2144E+00 1.6017 - - - 9.7700 9.7300 9.9199

www.manaraa.com

32

5.2.3 Algorithm Based on Combination of Weights and Votes

This algorithm is obtained by combining row-wise votes method described in 5.1.3 and IF.

In this combination, actually, there is no clear separation between detection of outliers phase

and estimation of true values phase. Having a table of votes (see Table. 5.3) the algorithm

uses its values as an indicator to use the corresponding reading in calculations or not to use

(see Equation (5.4)).

r (t) =

n∑
s=1

ws ∗ x (t)
s ∗ votes(t)

s (5.4)

If an indicator votes(t)
s is 1 then the algorithm uses the corresponding reading in the same

way as in IF. Otherwise the reading is simply ignored. Pseudo-code of the algorithm is

shown in Algorithm 4.

Algorithm 4: Weights and Votes Algorithm

Input : X[m, n]

Output: r
1 for t = 1 : m do
2 Compute LOFk (x (t)

s) for current observation, where 1 ≤ s ≤ n

3 Compute LOFk (x (t)) =
∑n

s=1
LOFk (x (t)

s)
n

4 for s = 1 : n do
5 if LOF (x (t)

s) < LOFk (x (t)) then
6 votes(t)

s = 1;

7 end
8 else
9 votes(t)

s = 0;

10 end
11 end
12 end
13 W ← 1;

14 while r notConverged do
15 for t = 1 : m do
16 r (t) =

∑n
s=1

ws ∗ x (t)
s ∗ votes(t)

s
17 end
18 Compute W ;

19 end

www.manaraa.com

33

5.2.4 Detection of Outliers and Statistical Estimation

For our studies, we combined Detection of Outliers in a Single Step and Detection of

Outliers using K-means clustering method, described in Sections 5.1.1 and 5.1.4, with

Statistical Estimation, described in Section 3.3. As presented in Chapter 7, these two

combinations produce best results in our experiments. There we call these algorithms

LOF-single-weightedSum and k-means-LOF-single-weightedSum, respectively.

Example 8. Let us apply LOF-single-weightedSum for the same data set used in previous

examples. At the first phase the algorithm similarly detects and excludes outlier readings

from sensors s6 - s8. At the second phase Statistical estimation method is applied (see

Table 5.9).

Table 5.9: Detection of Outliers in a Single Step and Statistical estimation

Sensor readings aggregate values

instant s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

t = 1 10.73 9.61 9.77 10.20 10.42 15.45 15.13 11.6157

t = 2 10.75 9.63 9.73 10.21 10.43 15.75 15.93 11.7757

t = 3 10.74 9.69 9.92 10.32 10.9 15.98 15.39 11.8486

1
p
h
as

e X 10.7400 9.6433 9.8067 10.2433 10.5833 15.7267 15.4833 11.7467

LOF4(X) 1.0865 1.3148 1.0816 0.6061 1.0912 3.5704 3.3897 2.3257

LOF4(X) 1.8083

LOF4(xs) < LOF4(X) true true true true true false false false

2
p
h
as

e t=1 t=2 t=3

υs 0.0001 0.0017 0.0100 0.0044 0.0752 - - -

weights 0.9161 0.0529 0.0091 0.0207 0.0012 - - - 10.6507 10.6699 10.6685

www.manaraa.com

Chapter 6

Estimation of LOF for Simple Datasets

Let G = {g1, g2, · · · , gng } be a set of readings from ng ‘good’ sensors. In our study, a reading

from a ‘good’ sensor means that the sensor, the embedded device, and communication from

the embedded device to the destination are normal; there is no hardware, software, and

network issues have changed or altered the reading. Similarly, let B′ = {b1, b2, · · · , bnb+1}
be a set of ‘bad’ readings from bb + 1 sensors. A ‘bad’ reading may be due to several

reasons, including but not limited to, a faulty sensor or a reading altered by an adversary

or a colluder. If a collusion attack of the type described in [18] has occurred, then one of

readings bi ∈ B′ is the average of the remaining nb from B′ and all ng readings from G.

Without loss of generality, let us assume that bnb+1 is the average reading introduced by the

colluder. Let us define B = B′ \ {bnb+1}, and av = bnb+1, where

av =

∑ng
i=1

gi +
∑nb

j=1
bj

ng + nb
. (6.1)

Figure 6.1: Collusion Attack Model.

34

www.manaraa.com

35

For simplifying presentation, initially we assume that all readings in G are same and

equal to μg and similarly, we also assume that readings in B are equal to μb. Then the value

of colluded reading bnb+1 = av is given by,

μ =
ng · μg + nb · μb

ng + nb
(6.2)

Later, we will discuss how this restriction can be eliminated. By these assumptions,

d(gi, g j) = 0 for 1 ≤ i, j ≤ ng and also, d(bi, bj) = 0 for 1 ≤ i, j ≤ nb. For real-

world situations, there should be considerably more ‘good’ observations than ‘bad’, that is,

ng > (nb + 1).

In this situation, we want to theoretically determine the value of LOFk for different

range of values for k. For good sensors and av, we need to consider only one case, but

for bad sensors, we have to consider three cases: k < min{ng, nb}, k = min{ng, nb}, and

min{ng, nb} < k < max{ng, nb}.

Lemma 1. For gi, g j ∈ G, and 1 ≤ k < max{ng, nb},
(1) dk (gi) = 0,

(2) Nk (gi) = G \ {gi},
(3) |Nk (gi) | = ng − 1,

(4) Rdk (g j ← gi) = ε ,

(5) lrdk (gi) = 1
ε .

�

Proof. The proofs of all items of the Lemma start from definitions. Since k is less than

ng, the number of objects in G, a k-nearest neighbor dk (gi) of any object gi ∈ G is another

object in G. Because of the assumption that all readings in G are equal and by Definition 3,

we have dk (gi) = 0.

By Definition 4 all objects in G except the object gi are in Nk (gi), the set of the k-nearest

neighbors of gi.

www.manaraa.com

36

The observation just made leads us to the fact that there are (ng − 1) objects in Nk (gi).

By Definition 5, and the fact that dk (gi) = d(gi, g j), for all gi, g j ∈ G,

Rdk (g j ← gi) = max(dk (gi), d(gi, g j), ε) = ε .

By Definition 6,

lrdk (gi) =
|Nk (gi) |∑

gj∈Nk (gi) Rdk (g j ← gi)
.

Now using the results we have already proved,

lrdk (gi) =
ng − 1

(ng − 1)ε
=

1

ε
.

This completes the proofs. �

Theorem 1. For all gi ∈ G, and 1 ≤ k < max{ng, nb}, LOFk (gi) = 1.

�

Proof. By Definition 7, LOFk (gi) for gi ∈ G

LOFk (gi) =
∑

q∈Nk (gi) lrdk (q)
|Nk (gi) | · lrdk (gi)

(6.3)

=

∑
q∈G\{gi } lrdk (q)

(ng − 1) · lrdk (gi)
(by Lemma 1) (6.4)

=
(ng − 1) · 1

ε

(ng − 1) · 1
ε

= 1 (by Lemma 1) (6.5)

�

www.manaraa.com

37

Next we present a lemma for the av.

Lemma 2. For gi ∈ G, av, and 1 ≤ k < max{ng, nb},
(1) dk (av) = nb ·|μb−μg |

ng+nb
,

(2) Nk (av) = G,

(3) |Nk (av) | = ng,

(4) Rdk (gi ← av) = nb ·|μb−μg |
ng+nb

,

(5) lrdk (av) = ng+nb
nb ·|μb−μg | .

�

Proof. A k-nearest object of av can be either in G or in B, which are at distances |μ − μg |
and |μb− μ|, respectively. After substituting expression for μ from Equation (6.2) in |μ− μg |
and |μb − μ|, and then some simplifications we get,

|μ − μg | =
nb · ���μb − μg���

ng + nb
,

and

|μb − μ| =
ng · ���μb − μg���

ng + nb
.

Since it was assumed that ng > (nb + 1), we have |μ − μg | < |μb − μ|. Thus, all object

in G are at k-distance from av, and

dk (av) =
nb · ���μb − μg���

ng + nb
.

Also, a k-nearest neighbor of av is in G and distance between any two objects in G is 0,

by Definition 4 all ng objects in G are in the set Nk (av), that is, Nk (av) = G.

From above discussion, it is clear the value of |Nk (av) | is ng.

By Definition 5,

Rdk (gi ← av) = max(dk (av), d(av, gi), ε).

www.manaraa.com

38

We have already proved that d(av, gi) = |μ − μg | and dk (av) = |μ − μg |. Hence,

Rdk (gi ← av) = |μ − μg | =
nb · ���μb − μg���

ng + nb
.

Finally, by Definition 6,

lrdk (av) =
|Nk (av) |∑

gi∈Nk (av) Rdk (gi ← av)
.

After substitution of values of Rdk (gi ← av) in the equation above, we get

lrdk (av) =
ng

ng · |μ − μg | =
1

|μ − μg | =
ng + nb

nb · ���μb − μg���
.

�

Theorem 2. For gi ∈ G and 1 ≤ k < max{ng, nb}, LOFk (av) = nb ·|μb−μg |
(ng+nb)·ε

�

Proof. By Definition 7,

LOFk (av) =
∑

q∈Nk (av) lrdk (q)
|Nk (av) | · lrdk (av)

(6.6)

=

∑
q∈G lrdk (q)

ng · lrdk (av)
(by Lemma 2) (6.7)

=
nb · ���μb − μg���
(ng + nb) · ε (by Lemmas 1 and 2) (6.8)

�

www.manaraa.com

39

Lemma 3. For bi, bj ∈ B, and 1 ≤ k < min{ng, nb},
(1) dk (bi) = 0,

(2) Nk (bi) = B \ {bi},
(3) |Nk (bi) | = nb − 1,

(4) Rdk (bj ← bi) = ε ,

(5) lrdk (bi) = 1
ε .

�

Proof is similar to the proof of Lemma 1, and omitted for avoiding duplicity and

conserving space.

Theorem 3. For bi ∈ B and 1 ≤ k < min{ng, nb}, LOFk (bi) = 1,

Proof. By Definition 7, LOFk (bi) for bi ∈ B

LOFk (bi) =
∑

q∈Nk (bi) lrdk (q)
|Nk (bi) | · lrdk (bi)

(6.9)

=

∑
q∈B\{bi } lrdk (q)

(nb − 1) · lrdk (bi)
(by Lemma 3) (6.10)

=
(nb − 1) · 1

ε

(nb − 1) · 1
ε

= 1 (by Lemma 3) (6.11)

�

Lemma 4. For bi, bj ∈ B, av, and k = min(ng, nb),

(1) dk (bi) =
����
ng ·(μb−μg)

ng+nb

����,

(2) Nk (bi) = {av} ∪ B \ {bi},
(3) |Nk (bi) | = nb,

(4) Rdk (bj ← bi) =
����
ng ·(μb−μg)

ng+nb

����,

Rdk (av ← bi) =
����
ng ·(μb−μg)

ng+nb

����,

(5) lrdk (bi) =
����

ng+nb
ng ·(μb−μg)

����.

www.manaraa.com

40

Proof. Since k is equal to the number of objects in B, the k-nearest neighbor of any object

in B must be an object that is not in B. Since the object av is closest to the objects in B, it

is the k-nearest neighbor of all objects in B. The distance between an object bi ∈ B and av

is
ng ·|μb−μg |

ng+nb
, and equals to dk (bi).

Since distance between any objects bi ∈ B is 0 and the k-nearest neighbor of bi is av,

then by Definition 4 object av and all objects in B except the object bi are the k-nearest

neighbors. Thus, Nk (bi) = {av} ∪ B \ {bi}.
From the proof above, it is clear that bi ∈ B, |Nk (bi) | = nb.

By Definition 5, Rdk (bj ← bi) = max(dk (bi), d(bi, bj), ε) and Rdk (av ← bi) =

max(dk (bi), d(bi, av), ε). Already we have proved that dk (bi) =
ng ·|μb−μg |

ng+nb
. Hence,

Rdk (bj ← bi) =
ng ·|μb−μg |

ng+nb
and Rdk (av ← bi) =

ng ·|μb−μg |
ng+nb

.

By Definition 6,

lrdk (bi) =
|Nk (bi) |∑

p∈Nk (bi) Rdk (p← bi)
(6.12)

=
|Nk (bi) |∑

p∈Nk (bi)\{av} Rdk (p← bi) + Rdk (av ← bi)
. (6.13)

Substitution of all values of Rdk (bi) and simplification leads to the desired result,

lrdk (bi) =
ng + nb

ng · ���μb − μg���
. (6.14)

�

Theorem 4. For gi ∈ G, bi ∈ B, av and k = min{ng, nb}
LOFk (bi) = 1 +

ng−nb
(nb)2 .

www.manaraa.com

41

Proof of Theorem 4. By definition of LOFk (bi) we have,

LOFk (bi) =
∑

q∈Nk (bi) lrdk (q)
|Nk (bi) | · lrdk (bi)

(6.15)

=
lrdk (av) +

∑
q∈B\{bi } lrdk (q)

nb · lrdk (bi)
(by Lemma 4) (6.16)

=
lrdk (av)+

nb · lrdk (bi)
+

∑
q∈B\{bi } lrdk (q)
nb · lrdk (bi)

(6.17)

=
lrdk (av)+

nb · lrdk (bi)
+

(nb − 1) · lrdk (bi)
nb · lrdk (bi)

(6.18)

Now using results from Lemmas 2 and 4, and doing some simplifications we get,

LOFk (bi) = 1 +
ng − nb

(nb)2

�

Lemma 5. For bi, bj ∈ B, av, and, min{ng, nb} < k < max{ng, nb}
(1) dk (bi) = |μb − μg |,
(2) Nk (bi) = G ∪ {av} ∪ B \ {bi},
(3) |Nk (bi) | = ng + nb,

(4) Rdk (bj ← bi) = |μb − μg |,
Rdk (av ← bi) = |μb − μg |,
Rdk (gi ← bi) = |μb − μg |,

(5) lrdk (bi) = 1
|μb−μg | .

�

Proof. Since k is greater than the number of objects in B, a k-nearest neighbor of any object

in B is an object in G, which gives k-distance, dk (bi) = |μb − μg |.

www.manaraa.com

42

Since distance between any two objects in B is 0, a k-nearest neighbor is in G, and

distance between any objects in G is also 0, then by Definition 4 all objects in G, object av,

and all objects in B except objects bi are in the k-nearest objects set denoted as Nk (bi).

Since all objects in G, object av, and all objects in B except the subject bi are in Nk (bi),

the number of members of Nk (bi) is calculated as ng + 1 + (nb − 1) = ng + nb.

By Definition 5,

Rdk (bj ← bi) = max(dk (bi), d(bi, bj), ε), (6.19)

Rdk (av ← bi) = max(dk (bi), d(bi, av), ε), (6.20)

Rdk (gi ← bi) = max(dk (bi), d(bi, gi), ε). (6.21)

We have already proved that dk (bi) = |μb − μg |. Hence, Rdk (bj ← bi) = |μb − μg |,
Rdk (av ← bi) = |μb − μg |, and Rdk (gi ← bi) = |μb − μg |.

By Definition 6,

lrdk (bi) =
|Nk (bi) |∑

p∈Nk (bi) Rdk (p← bi)
(6.22)

=
|Nk (bi) |∑

p∈B\bi Rdk (p← bi) + Rdk (av ← bi) +
∑

q∈G Rdk (q ← bi)
. (6.23)

Now substitution of expressions we have already found for Rdk (bj ← bi),

Rdk (av ← bi), and Rdk (gi ← bi) in the expression above, we get the desired result:

lrdk (bi) =
1

|μb − μg | . (6.24)

�

Theorem 5. For k > min{ng, nb}, gi ∈ G, bj ∈ B, and av

LOFk (bi) =
ng ·|μb−μg |
(ng+nb)·ε +

1
nb
+

nb−1
ng+nb

.

www.manaraa.com

43

Proof of Theorem 5. By definition of LOFk (bi) we have,

LOFk (bi) =
∑

q∈Nk (bi) lrdk (q)
|Nk (bi) | · lrdk (bi)

(6.25)

=

∑
q∈G lrdk (q) + lrdk (av) +

∑
q∈B\{bi } lrdk (q)

(ng + nb) · lrdk (bi)
(by Lemma 5) (6.26)

=

∑
q∈G lrdk (q)

(ng + nb) · lrdk (bi)
+

lrdk (av)
(ng + nb) · lrdk (bi)

(6.27)

+

∑
q∈B\{bi } lrdk (q)

(ng + nb) · lrdk (bi)
(by Lemmas 1, 2, and 5) (6.28)

=
ng · |μb − μg |
(ng + nb) · ε +

1

nb
+

nb − 1

ng + nb
(6.29)

�

www.manaraa.com

Chapter 7

Experimental Results

The experimental evaluation of the proposed algorithms aims to verify their reliability and

efficiency in the presence of a collusion attack. Since the RDAM performs best in the

presence of collusion attack [18], we use this algorithm’s performance as a benchmark

for measuring that of the proposed algorithms. In order to evaluate the accuracy of the

investigated algorithms in the presence of collusion attack, we assume that an attacker

compromises c sensor nodes out of n nodes in a cluster and c < n/2.

7.1 Experimental Settings

Unless otherwise stated, we reconstruct the same conditions that are used in [18] for

generating datasets for evaluation of the proposed algorithms. We used Matlab 9.0 (R2015b)

as our programing platform. We model a cluster of n = 20 sensor nodes and assume that

these 20 nodes reports their readings to a cluster head or data aggregator. Each sensor

gathers m = 400 readings before sending them to the cluster head. For consistency and fair

comparisons, the original signal is generated using the Equation (7.1), which has been used

in [18].

r (t) = 5 · n · sin �
�

√
2 · t

2 · π
�
�
, (7.1)

where t ∈ {1..m}.
To generate synthetic data sets X , we add noise e(t)

s to the original signal r (t) as shown

by Equation (7.2)

x (t)
s = r (t) + e(t)

s . (7.2)

We use Gaussian distribution for both stochastic noise for readings from reliable sensors

and correlated noise for readings from colluded sensors. In our experiments for the sensors

that are considered reliable we add the same biased error as in [18] and is defined by

Equations (7.3) and (7.4).

44

www.manaraa.com

45

bs ∼ N (0, σ2
b) (7.3)

e(t)
s ∼ N (bs, σ

2) (7.4)

Moreover, we conduct experiments with another type of additive noise signals for the

reliable sensors. Equation (7.5) describes this type of noise signal. Note that the baseline

variance of the noise is increased by a multiplicative factor of
√

s for the sensor with id s.3

e(t)
s ∼ N (bs,

√
s · σ2) (7.5)

For errors of colluded readings we use the same models, which are described by Equa-

tions (7.6) and (7.7) as in [18]. For noise we also use a modified model described by

Equation (7.8). In this modified model the multiplicative factor
√

s is removed (or set to 1).

b′s ∼ N (0, 3 · σ2
b), (7.6)

e(t)
s ∼ N (b′s, 5 ·

√
s · σ2) (7.7)

e(t)
s ∼ N (b′s, 5 · σ2) (7.8)

Parameters used in our experiments:

• each experiment is repeated 200 times and results are averaged;

• for all experiments σ2
b = 4;

• value of standard deviation σ in each experiment is varied from 1 to 5;

• number of compromised sensors c in each experiment is varied from 3 to 8.

3We noted in Chapter 2 that sensor networks are often used in hostile environment. So it could happen
that every next sensor is exposed to greater external influence and therefore noise increases accordingly.

www.manaraa.com

46

We use only one discriminant function in our experiments g(d) = d−1 (see details

in [18]) for iterative filtering phase of RDAM algorithm. The selection of this discriminant

functions is compelled by the fact that out of four discriminant functions used for evaluations

in [18], this function had shown the best performance.

For fair comparisons performance of the RDAM and our proposed algorithms, we used

same sets of generated data for both methods.

7.2 Performance Evaluation Metric

To measure performance of the proposed algorithms we use two metrics: Root Mean

Squared error (RMSE) and the Maximum Error (ME) defined by Equations (7.9) and

(7.10), respectively. The RDAM algorithm used RMSE for evaluating performance of the

algorithm against existing algorithms. We added ME to the metric for capturing worst-case

performance.

RMSE =

√∑m
t=1

(r (t) − r (t))2

m
, (7.9)

where r (t) and r (t) are true values and estimate of true values of the signal at time t,

respectively.

ME = max
∀ t

(|r (t) − r (t) |), (7.10)

where max is the function that returns maximum value for all t and that |.| is absolute value

function. The efficiency is evaluated by the number of iterations needed for the IF algorithm

to converge.

7.3 Results

We present some of our typical observations from our extensive simulation results. For ease

of comparison we illustrate our results as line plots. Moreover, we included corresponding

data in the table format for those who want to examine the results more closely and critically.

www.manaraa.com

47

We evaluated all the proposed algorithms, but we report results only for those algorithms

that have produced best results. It should be noted that with rare exceptions, all our

algorithms performed better than the RDAM algorithm.

The first set of results is for datasets that are (statistically) identical to those used

for experiments in [18]. For visual display of the results, Figure 7.1 show plots RSME

vs standard deviation for our proposed algorithms and RDAM algorithms. For detailed

comparisons data is shown in Table 7.1. It is clear from the table and the plots that

performance of our algorithm is as good or better than that of RDAM. For the case with 8

colluders the RMSE for our methods are 3-13% lower than that of the RDAM algorithm.

(a) RDAM (b) LOF-single-RDAM

(c) LOF-single-weightedSum (d) k-means-LOF-single-weightedSum

Figure 7.1: RMSE with original conditions of collusion attack

www.manaraa.com

48

Table 7.1: Evaluation parameters for algorithms with original conditions of collusion attack4

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

colluders = 3

RDAM 0.6574 1.4508 30.1 - 0.7505 2.0504 18.2 - 0.8934 2.6717 13.2 - 1.1022 3.3903 11.6 - 1.3304 4.1212 10.5 -

LOF-single-RDAM 0.6838 1.4883 29.4 3.6 0.7538 2.0507 18.1 2.3 0.8938 2.6747 13.1 2.1 1.1022 3.3940 11.1 2.3 1.3273 4.1203 9.7 2.5

LOF-single-weightedSum 0.5372 1.2022 - 3.6 0.7108 1.9284 - 2.3 0.8947 2.6533 - 2.1 1.1192 3.3929 - 2.3 1.3524 4.1712 - 2.5

k-means-LOF-single-weightedSum 0.4936 1.1485 - 3.5 0.7083 1.9174 - 2.2 0.8908 2.6435 - 2 1.1309 3.4292 - 2 1.3899 4.2508 - 2

colluders = 8

RDAM 0.8259 1.9498 33.5 - 0.8757 2.4223 20 - 1.0750 3.2259 15.4 - 1.3449 4.0963 13.6 - 1.6044 4.9986 12.2 -

LOF-single-RDAM 0.8473 1.9845 30.5 9.3 0.8788 2.4518 18.9 8.2 1.0742 3.2310 13.3 8 1.3359 4.0855 11.6 8 1.5771 4.9631 10.1 8

LOF-single-weightedSum 0.7880 1.8029 - 9.3 0.7918 2.2175 - 8.2 1.0235 3.1051 - 8 1.2960 3.9414 - 8 1.5513 4.8549 - 8

k-means-LOF-single-weightedSum 0.7505 1.6621 - 8.7 0.7628 2.1627 - 8 1.0173 3.0911 - 8 1.2960 3.9414 - 8 1.5513 4.8549 - 8

Figures 7.2, 7.3, 7.4 and Table 7.2 report results when sensor readings for reliable

and compromised sensors is generated by noise models described by Equations (7.5) and

(7.8), respectively. It is not difficult to see from the plots that the proposed algorithms

reduce RMSE values significantly. The accuracy of the proposed algorithms is especially

noticeable for larger number of colluders and higher standard deviations. As can be seen

from Figure 7.6, for the case with 8 colluders the RMSE for our methods is 18% to 53%

lower when standard deviation is varied from 1 to 5. The RMSE improvement linearly

grows from about 18% to about 50% as a standard deviation increases from 1 to 3. For

standard deviation 3 to 5 the improvement rate slows down, but improvement continues.

Table 7.2: Evaluation parameters for algorithms with changed conditions of collusion

attack4

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

rm
se

m
ax

im
u
m

er
ro

r

it
er

at
io

n
s

co
ll
u
d
er

s

es
ti
m

at
ed

colluders = 3

RDAM 1.0059 2.7799 4.6 - 1.7168 5.1185 4.4 - 2.5316 7.6470 4.5 - 3.3142 10.0966 4.4 - 4.0603 12.6340 4.5 -

LOF-single-RDAM 1.0014 2.7872 5.2 6.2 1.7168 5.1185 4.7 5.7 2.5316 7.6470 4.8 4.9 3.3142 10.0966 4.8 3.9 4.0603 12.6340 4.9 3.5

LOF-single-weightedSum 0.9692 2.8874 - 6.2 1.7075 5.3249 - 5.7 2.4209 7.6926 - 4.9 3.0739 9.8150 - 3.9 3.7481 11.9457 - 3.5

k-means-LOF-single-weightedSum 0.9573 2.8315 - 5.6 1.6414 5.1075 - 4.6 2.3447 7.3742 - 4 3.0361 9.6776 - 3.6 3.7237 11.9046 - 3.3

colluders = 8

RDAM 2.4005 4.4884 7.5 - 3.6886 7.5213 4.9 - 5.1274 10.7595 4.2 - 6.6793 14.1918 4 - 8.1766 17.3392 3.9 -

LOF-single-RDAM 2.2845 4.3970 10 6.8 2.5574 6.9895 21.3 9.1 3.2860 10.1231 20.6 9.6 4.1614 13.1627 18.6 9.4 5.0825 16.0328 19.6 8.9

LOF-single-weightedSum 1.9412 4.1053 - 6.8 2.5341 6.7288 - 9.1 2.6409 8.2082 - 9.6 3.1995 10.2005 - 9.4 3.8542 12.3122 - 8.9

k-means-LOF-single-weightedSum 1.9694 4.1640 - 6.7 2.3306 6.2936 - 8.6 2.5331 7.9323 - 8.9 3.1282 10.0773 - 8.7 3.7671 12.0540 - 8.4

Assessing performances of the algorithms in terms of the maximum error (defined

by (7.10)), it can be concluded that all our proposed methods give approximately the

4For conserving space we provide data only for cases with 3 and 8 colluders.

www.manaraa.com

49

Figure 7.2: RMSE with changed conditions of collusion attack with 3 colluders

Figure 7.3: RMSE with changed conditions of collusion attack with 5 colluders

www.manaraa.com

50

Figure 7.4: RMSE with changed conditions of collusion attack with 7 colluders

Figure 7.5: RMSE with changed conditions of collusion attack with 8 colluders

www.manaraa.com

51

Figure 7.6: RMSE reduction with changed conditions of collusion attack with 8 colluders

comparing to RDAM

same level of maximum error, except LOF-single-weightedSum and k-means-LOF-single-

weightedSum, which show significantly lower ME as can be seen in Figure 7.7 and Table 7.2.

Figures 7.2, 7.3, 7.4, 7.5, and 7.7 also show that two of our methods — LOF-single-

weightedSum and k-means-LOF-single-weightedSum — outperforms all others. For a given

level of added noise level and number of colluders, their RMSE and ME are almost identical.

The reason for their success is their ability to identify colluded readings with fairly high

degree of accuracy (see Tables 7.1 and 7.2). For original conditions of collusion attack for

σ = {3, 4, 5} and 8 colluders the estimated number of colluders is exactly 8.

Recall that algorithms LOF-single-weightedSum and k-means-LOF-single-weighted-

Sum do not use iterative filtering. Thus, they reduce computation time and do not suf-

fer from weaknesses of the iterative filtering algorithms.

www.manaraa.com

52

(a) The maximum error for collusion attack with
3 colluders

(b) The maximum error for collusion attack with
5 colluders

(c) The maximum error for collusion attack with
7 colluders

(d) The maximum error for collusion attack with
8 colluders

Figure 7.7: The maximum error with changed conditions of collusion attack

www.manaraa.com

Chapter 8

Conclusion

In this work, we concentrated on the development of outlier detection methods. We

described the conception of local outlier factor, which plays a key role in our methods.

Then we proposed several two phase outlier detection algorithms.

The main feature of our algorithms is detection and removal of outliers before estimation

true value. First, this increases the accuracy by removing the influence of outliers in

aggregated result. Second, having only reliable data true values can be estimated non-

iteratively, which decreases computational cost.

We used the RDAM [18] as the benchmark for comparison since it has shown best results

against original collusion attack. We tested RDAM and our algorithms against collusion

attacks considered in [18]. Moreover, we created examples of collusion attack scenario that

were not considered in [18]. Under these novel attack scenario the proposed algorithms

performed much better than the RDAM.

We have presented experimental results that show that (1) the estimates have higher

accuracy than RDAM and (2) the algorithms have better efficiency than that of the RDAM.

We observed that detecting local outliers for sensor readings using LOF is efficient.

Since computation of local outlier factor is not a low computational-cost method, we

have found expressions that are useful for calculating outlier factors for simple data. While

conducting this research we changed some original definitions and discovered promising

opportunities that can lead to new clustering methods, which will be a scope for future

work.

53

www.manaraa.com

References
[1] Mahmoud Abou-Nasr. Real world data mining applications. Springer Publishing

Company, Incorporated, 2014.

[2] Erman Ayday and Faramarz Fekri. Iterative trust and reputation management us-

ing belief propagation. IEEE Transactions on Dependable and Secure Computing,

9(3):375–386, 2012.

[3] V. Barnett and T. Lewis. Outliers in statistical data. John Wiley, 1994.

[4] Christopher M. Bishop. Pattern recognition and machine learning (Information sci-
ence and statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] Joel Branch, Boleslaw Szymanski, Chris Giannella, Ran Wolff, and Hillol Kargupta.

In-network outlier detection in wireless sensor networks. In Proceedings of the 26th
IEEE International Conference on Distributed Computing Systems, ICDCS ’06, pages

51–, Washington, DC, USA, 2006. IEEE Computer Society.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based
local outliers. ACM, Dalles, Texas, USA, 2000.

[7] V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, and B. Maglaris. Hierarchical

anomaly detection in distributed large-scale sensor networks. In Proceedings of the
11th IEEE Symposium on Computers and Communications, ISCC ’06, pages 761–767,

Washington, DC, USA, 2006. IEEE Computer Society.

[8] Cristobald de Kerchove and Paul Van Dooren. Iterative filtering in reputation systems.

SIAM. J. Matrix Anal. Appl., 31(4):1812–1834, 2010.

[9] John A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc., New York, NY,

USA, 99th edition, 1975.

[10] D. Hawkins. Identification of outliers. Chapman and Hall, London, 1980.

[11] David J Hill, Barbara S Minsker, and Eyal Amir. Real-time Bayesian anomaly de-

tection for environmental sensor data. In Proceedings of the Congress-International
Association for Hydraulic Research, volume 32, page 503. Citeseer, 2007.

[12] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1988.

[13] Raja Jurdak, X.Rosalind Wang, Oliver Obst, and Philip Valencia. Wireless sensor net-

work anomalies: Diagnosis and detection strategies. In Andreas Tolk and Lakhmi C.

Jain, editors, Intelligence-Based Systems Engineering, volume 10 of Intelligent Sys-
tems Reference Library, pages 309–325. Springer Berlin Heidelberg, 2011.

[14] David C LeBlanc. Statistics. Jones and Bartlett, 2004.

54

www.manaraa.com

55

[15] Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, and Hong Cheng. Robust reputation-based

ranking on bipartite rating networks. In SDM, volume 12, pages 612–623. SIAM,

2012.

[16] Stefano Mizzaro. Quality control in scholarly publishing: A new proposal. Journal
of the American Society for Information Science and Technology, 54(11):989–1005,

2003.

[17] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj Chehade, Laura Balzano, Sheela

Nair, Sadaf Zahedi, Eddie Kohler, Greg Pottie, Mark Hansen, and Mani Srivastava.

Sensor network data fault types. ACM Trans. Sen. Netw., 5(3):25:1–25:29, June 2009.

[18] M. Rezvani, A. Ignatovich, E. Bertino, and S. Jha. Secure data aggregation technique
for wireless sensor networks in the presence of collusion attacks, volume 12. IEEE

Transactions on Dependable and Secure Computing, January/February 2015.

[19] Abhishek B. Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults: Detec-

tion methods and prevalence in real-world datasets. ACM Trans. Sen. Netw., 6(3):23:1–

23:39, June 2010.

[20] David Wagner. Resilient aggregation in sensor networks. In Proceedings of the 2Nd
ACM Workshop on Security of Ad Hoc and Sensor Networks, SASN ’04, pages 78–87,

New York, NY, USA, 2004. ACM.

[21] X. Rosalind Wang, Joseph T. Lizier, Oliver Obst, Mikhail Prokopenko, and Peter Wang.

Spatiotemporal anomaly detection in gas monitoring sensor networks. In Proceedings
of the 5th European Conference on Wireless Sensor Networks, EWSN’08, pages 90–

105, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] Weili Wu, Xiuzhen Cheng, Min Ding, Kai Xing, Fang Liu, and Ping Deng. Localized

outlying and boundary data detection in sensor networks. IEEE Trans. on Knowl. and
Data Eng., 19(8):1145–1157, August 2007.

[23] Yi-Kuo Yu, Yi-Cheng Zhang, Paolo Laureti, and Lionel Moret. Decoding information

from noisy, redundant, and intentionally distorted sources. Physica A: Statistical
Mechanics and its Applications, 371(2):732–744, 2006.

[24] Y. Zhang, N. A. S. Hamm, N. Meratnia, A. Stein, M. van de Voort, and P. J. M.

Havinga. Statistics-based outlier detection for wireless sensor networks. Int. J. Geogr.
Inf. Sci., 26(8):1373–1392, August 2012.

[25] Yang Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for wireless

sensor networks: A survey. Commun. Surveys Tuts., 12(2):159–170, April 2010.

[26] Yan-Bo Zhou, Ting Lei, and Tao Zhou. A robust ranking algorithm to spamming.

EPL, 94(4):48002, 2011.

	University of Miami
	Scholarly Repository
	2015-11-12

	Secure Data Aggregation for Sensor Networks in the Presence of Collusion Attack using Local Outlier Factor
	Anes Yessembayev
	Recommended Citation

	SecureDataAggregation.pdf

